Характеристика оборудования
Регистрация заряженных частиц
Распространённым прибором для регистрации заряженных частиц является газоразрядный счётчик Гейгера–Мюллера. Газоразрядный счётчик представляет собой металлический цилиндр, по оси которого натянута тонкая проволока, изолированная от цилиндра. Цилиндр заполняется специальной смесью газов (например, аргон + пары спирта), давление которых1000–1500 мм рт. ст. Счётчик включается в цепь: цилиндр соединяется с отрицательным полюсом источника тока, а нить с положительным; на них подаётся напряжение порядка 1000 В.
Попадание в счётчик быстрой заряженной частицы вызывает ионизацию газа. При этом образуется свободный электрон. Он движется к положительно заряженной нити, и в области сильного поля вблизи нити ионизирует атомы газа. Продукты ионизации — электроны — ускоряются полем и в свою очередь ионизируют газ, образуя новые свободные электроны, которые участвуют в дальнейшей ионизации атомов газа.
Число ионизированных атомов лавинообразно возрастает — в газе счётчика вспыхивает электрический разряд. При этом по цепи счётчика проходит кратковременный импульс электрического тока. Отрицательно заряженные электроны собираются вблизи нити, а более массивные положительно заряженные ионы медленно движутся к стенкам цилиндра. Электроны уменьшают положительный заряд нити, а положительные ионы — отрицательный заряд цилиндра; соответственно, электрическое поле внутри цилиндра ослабевает. Через промежуток времени порядка микросекунды поле ослабляется настолько, что электроны не будут иметь скорости, необходимой для ионизации. Ионизация прекращается, и разряд обрывается.
За счёт притока зарядов из источника тока счётчик снова будет готов к работе через 100–2000 мкс после вспышки. Таким образом, в счётчике возникают кратковременные разряды, которые могут быть подсчитаны специальным устройством. По их числу можно оценить число частиц, попадающих в счётчик.
22. Задание 21 № 153. В каких частях земной атмосферы наблюдается наибольшая активность полярных сияний?
1) только около Северного полюса
2) только в экваториальных широтах
3) около магнитных полюсов Земли
4) в любых местах земной атмосферы
Полярные сияния
Полярное сияние — одно из самых красивых явлений в природе. Формы полярного сияния очень разнообразны: то это своеобразные светлые столбы, то изумрудно-зелёные с красной бахромой пылающие длинные ленты, расходящиеся многочисленные лучи-стрелы, а то и просто бесформенные светлые, иногда цветные пятна на небе.
Причудливый свет на небе сверкает, как пламя, охватывая порой больше чем полнеба. Эта фантастическая игра природных сил длится несколько часов, то угасая, то разгораясь.
Полярные сияния чаще всего наблюдаются в приполярных регионах, откуда и происходит это название. Полярные сияния могут быть видны не только на далёком Севере, но и южнее. Например, в 1938 году полярное сияние наблюдалось на южном берегу Крыма, что объясняется увеличением мощности возбудителя свечения — солнечного ветра.
Начало изучению полярных сияний положил великий русский учёный М. В. Ломоносов, высказавший гипотезу о том, что причиной этого явления служат электрические разряды в разреженном воздухе.
Опыты подтвердили научное предположение учёного.
Полярные сияния — это электрическое свечение верхних очень разреженных слоёв атмосферы на высоте (обычно) от 80 до 1000 км. Свечение это происходит под влиянием быстро движущихся электрически заряженных частиц (электронов и протонов), приходящих от Солнца. Взаимодействие солнечного ветра с магнитным полем Земли приводит к повышенной концентрации заряженных частиц в зонах, окружающих геомагнитные полюса Земли. Именно в этих зонах и наблюдается наибольшая активность полярных сияний.
Столкновения быстрых электронов и протонов с атомами кислорода и азота приводят атомы в возбуждённое состояние. Выделяя избыток энергии, атомы кислорода дают яркое излучение в зелёной и красной областях спектра, молекулы азота — в фиолетовой. Сочетание всех этих излучений и придаёт полярным сияниям красивую, часто меняющуюся окраску. Такие процессы могут происходить только в верхних слоях атмосферы, потому что, во-первых, в нижних плотных слоях столкновения атомов и молекул воздуха друг с другом сразу отнимают у них энергию, получаемую от солнечных частиц, а во-вторых, сами космические частицы не могут проникнуть глубоко в земную атмосферу.
Полярные сияния происходят чаще и бывают ярче в годы максимума солнечной активности, а также в дни появления на Солнце мощных вспышек и других форм усиления солнечной активности, так как с её повышением усиливается интенсивность солнечного ветра, который является причиной возникновения полярных сияний.
23. Задание 22 № 698. В начале XX века французский ученый Поль Ланжевен изобрёл излучатель ультразвуковых волн. Заряжая грани кварцевого кристалла электричеством от генератора переменного тока высокой частоты, он установил, что кристалл совершает при этом колебания с частотой, равной частоте изменения напряжения. Какой (прямой или обратный) пьезоэлектрический эффект лежит в основе действия излучателя? Ответ поясните.
Пьезоэлектричество
В 1880 году французские учёные — братья Пьер и Поль Кюри — исследовали свойства кристаллов. Они заметили, что если кристалл кварца сжать с двух сторон, то на его гранях, перпендикулярных направлению сжатия, возникают электрические заряды: на одной грани положительные, на другой — отрицательные. Таким же свойством обладают кристаллы турмалина, сегнетовой соли, даже сахара. Заряды на гранях кристалла возникают и при его растяжении. Причем если при сжатии на грани накапливался положительный заряд, то при растяжении на этой грани будет накапливаться отрицательный заряд, и наоборот. Это явление было названо пьезоэлектричеством (от греческого слова «пьезо» — давлю). Кристалл с таким свойством называют пъезоэлектриком.
В дальнейшем братья Кюри обнаружили, что пьезоэлектрический эффект обратим: если на гранях кристалла создать разноимённые электрические заряды, он либо сожмётся, либо растянется в зависимости от того, к какой грани приложен положительный и к какой — отрицательный заряд.
На явлении пьезоэлектричества основано действие широко распространённых пьезоэлектрических зажигалок. Основной частью такой зажигалки является пьезоэлемент — керамический пьезоэлектрический цилиндр с металлическими электродами на основаниях. При помощи механического устройства производится кратковременный удар по пьезоэлементу. При этом на двух его сторонах, расположенных перпендикулярно направлению действия деформирующей силы, появляются разноимённые электрические заряды. Напряжение между этими сторонами может достигать нескольких тысяч вольт. По изолированным проводам напряжение подводится к двум электродам, расположенным в наконечнике зажигалки на расстоянии 3-4 мм друг от друга. Возникающий между электродами искровой разряд поджигает смесь газа и воздуха.
Несмотря на очень большие напряжения (-10 кВ), опыты с пьезозажигалкой совершенно безопасны, так как даже при коротком замыкании сила тока оказывается такой же ничтожно малой и безопасной для здоровья человека, как при электростатических разрядах при снимании шерстяной или синтетической одежды в сухую погоду.
24. Задание 23 № 1103. (По материалам Камзеевой Е. Е.)
Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для определения коэффициента трения скольжения между кареткой и поверхностью рейки.
В ответе:
1) сделайте рисунок экспериментальной установки;
2) запишите формулу для расчёта коэффициента трения скольжения;
3) укажите результаты измерения веса каретки с грузом и силы трения скольжения при движении каретки по поверхности рейки;
4) запишите численное значение коэффициента трения скольжения.
Характеристика оборудования
При выполнении задания используется комплект оборудования в составе:
· каретка массой (100 ± 2) г;
· 1 груз массой (100 ± 2) г;
· динамометр школьный с пределом измерения 4 Н (C = 0,1 Н);
· направляющая рейка.
25. Задание 24 № 565. Два одинаковых латунных шарика падают с одной и той же высоты. Первый шарик упал в песок и остановился, а второй, ударившись о камень, отскочил и был пойман рукой на некоторой высоте. Внутренняя энергия какого шарика изменилась на большую величину? Ответ поясните.
26. Задание 25 № 809. Груз массой 2 кг равномерно втаскивают по шероховатой наклонной плоскости, имеющей высоту 0,6 м и длину 1 м, действуя на него силой, равной по модулю 20 Н и направленной вдоль наклонной плоскости. Чему равен КПД наклонной плоскости?
27. Задание 26 № 162. В алюминиевый калориметр массой 50 г налито 120 г воды и опущен электрический нагреватель мощностью 12,5 Вт. На сколько градусов нагреется калориметр с водой за 22 мин, если тепловые потери в окружающую среду составляют 20%?