Формула повної ймовірності. Формула Байеса

Нехай А – деяка подія, яка може відбутись або не відбутись одночасно з однією з подій Н1, Н2,...Нn, що утворюють повну групу несумісних подій Формула повної ймовірності. Формула Байеса - student2.ru . Події Н1, Н2,...Нn називають гіпотезами. Ймовірності всіх гіпотез відомі Р(Ні) (і= Формула повної ймовірності. Формула Байеса - student2.ru ), а також відомі умовні ймовірності події А при кожній гіпотезі, тобто дано: Формула повної ймовірності. Формула Байеса - student2.ru .

Тоді ймовірність події А визначається теоремою.

Теорема 1. (формула повної ймовірності). Ймовірність події А, що може відбутись разом з однією з гіпотез Н1, Н2,...Нn, дорівнює сумі добутків ймовірності кожної з гіпотез на відповідну умовну ймовірність події А:

Формула повної ймовірності. Формула Байеса - student2.ru . (1)

Доведення. Так як гіпотези Н1, Н2,...Нn утворюють повну групу подій, то подію А можна записати як: Формула повної ймовірності. Формула Байеса - student2.ru , а оскільки Формула повної ймовірності. Формула Байеса - student2.ru несумісні, то:

Формула повної ймовірності. Формула Байеса - student2.ru .

Теорема доведена.

До цих пір розглядалася ймовірність події до випробовування, тобто в комплексі умов не був присутній результат проведеного випробовування.

Тому поставимо тепер наступну задачу. Є повна група несумісних гіпотез Н1, Н2, ...Нn. Відомі ймовірності кожної з гіпотез Формула повної ймовірності. Формула Байеса - student2.ru . Проводиться випробування і в його результаті відбувається подія А, ймовірності якої по кожній гіпотезі відомі, тобто Формула повної ймовірності. Формула Байеса - student2.ru .

Виникає питання, які ймовірності мають гіпотези Hi Формула повної ймовірності. Формула Байеса - student2.ru в зв’язку з появою події А? Тобто були відомі ймовірності апріорні (від латинського a priori – до випробовування). Якщо ж подія А відбулася, то чи можна переоцінити ймовірності кожної з гіпотез Формула повної ймовірності. Формула Байеса - student2.ru ? Ці нові ймовірності будуть вже апостеріорними ймовірностями гіпотез (від латинського a posteriori – після випробовування).

Відповідь на це питання дає теорема Байеса.

Теорема 2. Ймовірність гіпотези після випробовування рівна добутку ймовірності гіпотези до випробовування на відповідну їй умовну ймовірність події, яка відбулася в результаті випробовування, поділеній на повну ймовірність цієї події:

Формула повної ймовірності. Формула Байеса - student2.ru Формула повної ймовірності. Формула Байеса - student2.ru . (2)

Доведення. З аксіоми множення ймовірностей випливає:

Формула повної ймовірності. Формула Байеса - student2.ru

Звідки

Формула повної ймовірності. Формула Байеса - student2.ru Формула повної ймовірності. Формула Байеса - student2.ru

Теорема доведена.

Приклад 1. До магазину надходять вироби з двох заводів, причому з першого 150 штук, а з другого 250. Перший завод випускає в середньому 0.5% бракованої продукції, другий – 0.2%. Яка ймовірність купити в магазині бракований виріб?

Рішення. Нехай подія А є купівля бракованого виробу, гіпотеза Н1 – виріб, випущений першим заводом, гіпотеза Н2 – другим заводом. Тоді

Формула повної ймовірності. Формула Байеса - student2.ru

По формулі повної ймовірності:

Формула повної ймовірності. Формула Байеса - student2.ru

Приклад 2. Спеціалізована лікарня приймає в середньому 50% хворих, що мають захворювання Н1, 30% - захворювання Н2 і 20% - Н3. Статистика свідчить, що ймовірність повного виліковування хвороби Н1 дорівнює 0.9, для хвороби Н2 – 0.7 і для хвороби Н3 – 0.8. Яка ймовірність того, що пацієнт, виписаний з лікарні цілком здоровим (подія А), був хворий на хворобу Н2?

Рішення. Формула повної ймовірності. Формула Байеса - student2.ru

Згідно формули Байеса

Формула повної ймовірності. Формула Байеса - student2.ru

Наши рекомендации