Определение расчетных усилий в элементах рамы
Методика статического расчета рамы
1. По конструктивной схеме выбираем расчетную схему. Задаем жесткости элементов (или их соотношение).
2. Выбираем метод расчета и основную систему.
3. Для основной системы построим эпюры Mi от единичных неизвестных (один раз для всех нагрузок) и эпюры Мрот данной нагрузки. При построении эпюр можно для стоек постоянного сечения и ступенчатых воспользоваться готовыми формулами, таблицами численных значений, графиками.
4. Составить канонические уравнения метода перемещений или метода сил и найти их коэффициенты. Например, при одном известном:
(метод перемещений); (1)
(метод сил) (2)
5. Решить канонические уравнения, найдя неизвестные для плоской
отдельной рамы.
6. Учесть пространственную работу каркаса. При расчете методом
сил Хпр = Х - XR, где X - неизвестное, определенное для плоской рамы,
XR - реакция упругого отпора по направлению неизвестного X..
7. Построить эпюры М, Q, N,значения которых S во всех характерных сечениях рамы определяются как
(3)
где Sp - усилие в сечении основной системы от нагрузки; Si - усилие в основной системе от i-гo единичного неизвестного; Xnpi - i-e неизвестное, определенное с учетом пространственной работы (для нагрузок, воздействующих на все рамы каркаса, Хпр = Х, т. е. неизвестному, определенному для плоской отдельной рамы).
8. Проверить правильность построения эпюр.
Определение расчетных усилий в элементах рамы
Определив в раме изгибающие моменты и нормальные силы от каждой из расчетных нагрузок, нужно найти их наиболее невыгодные сочетания, которые могут быть не одинаковыми для разных сечений элементов рамы. Как уже отмечалось, нормами проектирования предусмотрены основные и особые сочетания нагрузок. При составлении основных сочетаний учитываются:
1) постоянные нагрузки, плюс временные длительные нагрузки, плюс одна кратковременная с коэффициентом сочетаний, равным единице;
2) постоянные и временные длительные нагрузки, плюс не менее двух кратковременных нагрузок, умноженных каждая на коэффициент сочетаний 0,9.
Особые сочетания составляются при наличии сейсмических и других особых нагрузок.
Для рам промышленных зданий обычно составляются комбинации нагрузок основных сочетаний. Нагрузки от снега, кранов и ветра относятся к кратковременным, при этом нагрузки от вертикального и поперечного воздействия одного или двух мостовых кранов рассматриваются при учете сочетаний как одна кратковременная нагрузка. Для удобства определения расчетных усилий составляют сводные таблицы усилий в характерных сечениях для колонн рамы. Моменты в опорных сечениях ригеля равны моментам, действующим в сечении 1-1 для колонн. В таблице усилий выписывают значения моментов М и продольных сил N отдельно от всех нагрузок, причем для удобства определения расчетных комбинаций усилий они приводятся с коэффициентами сочетаний 1 и 0,9 (кроме постоянных и временных длительных нагрузок, которые всегда берутся с коэффициентом 1). Усилия М и N выписываются для сечений, где усилия носят скачкообразный характер и где размер сечения стержня колонны изменяется. Если в верхней части колонны есть проем для прохода, то у начала и конца проема тоже определяются усилия.
Для нижнего участка колонны кроме усилий Ми Nопределяют значение поперечной силы Q, которая необходима для расчета раскосов сквозных колонн и фундаментов.
Для расчета анкерных болтов составляют специальную комбинацию расчетных усилий в сечении 4-4. Обычно она включает в себя наименьшую продольную силу с наибольшими возможными моментами, причем продольная сила от постоянной нагрузки учитывается с коэффициентом перегрузки 0,9, так как она разгружает анкерные болты.
Так как заранее не известно, при каких комбинациях нагрузок напряжения в расчетных сечениях колонны будут иметь наибольшую величину, то по данным статического расчета составляют несколько комбинаций расчетных усилий. Комбинации нагрузок должны быть возможными, т. е. нельзя рассматривать усилия от боковых сил крана без учета вертикальных усилий, нельзя не учитывать постоянную нагрузку. По составленным комбинациям усилий в каждом сечении определяется наивыгоднейшая.
Конструкции покрытия
Покрытие производственного здания состоит из кровельных (ограждающих) конструкций, несущих элементов (прогонов, ферм, фонарей), на которые опирается кровля, и связей по покрытию, обеспечивающих пространственную неизменяемость, жесткость и устойчивость всего покрытия и его отдельных элементов.
Конструкция кровли
Покрытие производственного здания решается с применением прогонов или без них. В первом случае между стропильными фермами через 1,5-3 м устанавливают прогоны, на которые укладывают мелкоразмерные кровельные плиты, листы, настилы. Во втором случае непосредственно на стропильные фермы укладывают крупноразмерные плиты или панели шириной 1,5-3 м и длиной 6 или 12 м, совмещающие функции несущих и ограждающих конструкций.
Кровля по прогонам получается легче вследствие небольшого пролета ограждающих элементов, но требует большего расхода металла (на прогоны) и более трудоемка в монтаже. Беспрогонная кровля индустриальна и проста в монтаже, обеспечивает меньший расход стали (при применении железобетонных панелей); основной недостаток ее - большая масса.
Снижение массы кровельной конструкции имеет важное значение, ибо уменьшает стоимость не только конструкции кровли, но и всех нижерасположенных конструкций: фонарей, ферм, колонн и фундаментов.
Выбор конструкции кровли производится на основании технико-экономического сравнения возможных вариантов с учетом технологических и экономических факторов - назначения здания, температурно-влажностного режима внутрицеховой среды, стоимости возведения, наличия производственной базы по изготовлению крупноразмерных панелей в районе строительства, условий транспортировки, обеспеченности монтажными механизмами и т. д.
Прогоны
Прогоны воспринимают нагрузку от кровли и передают ее на стропильные конструкции. Прогоны бывают сплошного сечения и решетчатые. Сплошные прогоны тяжелее решетчатых, но значительно проще в изготовлении и монтаже. Они применяются при шаге ферм 6 м. Сплошные прогоны обычно изготовляются из прокатных швеллеров, реже из двутавров. Более рациональны прогоны из гнутых профилей швеллерного, С-образного и Z-образного сечения. Такие прогоны могут иметь развитую высоту при тонкой стенке. Для обеспечения местной устойчивости полок устраивают отгибы.
При легкой кровле и небольших снеговых нагрузках прогоны из гнутых профилей могут применяться при шаге ферм до 12м. При больших нагрузках более рациональны сквозные прогоны из перфорированного двутавра («сквозной» двутавр) и тонкостенных балок.
По расходу стали прогоны из «сквозных» двутавров приближаются к решетчатым, а по стоимости на 10-15 % дешевле.
Еще более эффективно использование для прогонов тонкостенных
балок. Учет закритической стадии работы стенки позволяет уменьшить
ее толщину и принять гибкость стенки (отношение высоты к толщине)
200 - 300. Такие прогоны на 8—18 % легче решетчатых. Для изготовления тонкостенных балок-прогонов разработана поточная линия с применением высокочастотной сварки.
Покрытия по прогонам
Прогоны устанавливают на верхний пояс стропильных ферм в их узлах. В качестве прогонов применяют прокатные балки, гнутые профили либо легкие сквозные конструкции (при шаге ферм больше 6 м). Кровельные покрытия бывают теплыми (с утеплителем) в отапливаемых производственных зданиях и холодными без утеплителя (для неотапливаемых зданий, а также горячих цехов, имеющих избыточные тепловыделения от технологических агрегатов).
Для теплых кровель в качестве несущих элементов, укладываемых по прогонам, широко используется стальной профилированный настил. Применяют также мелкоразмерные керамзитобетонные, армоцементные и асбестоцементные плиты, трехслойные панели типа сэндвич, состоящие из двух металлических листов, между которыми расположен утеплитель, или монопанели с несущим слоем из профилированного настила и гидроизоляцией из мягкой кровли.
Профилированный настил (рис.) изготовляют из оцинкованной рулонной стали толщиной t=0,8; 0,9; 1 мм; высота профиля h=40, 60 и 80 мм; ширина B = 680, 711 и 782 мм; длина до 12 м.
Профилированные листы укладывают по прогонам, расположенным через 3-4 м. При шаге стропильных ферм 4 м настил может опираться непосредственно на фермы.
Настил крепится к прогонам самонарезающими винтами. Между собой листы настила соединяются комбинированными заклепками, позволяющими вести клепку с одной стороны настила. Масса настила – 10-15 кг/м2.
Холодные кровли выполняют из волнистых асбестоцементных, стальных или алюминиевых листов, укладываемых по прогонам, расположенным через 1,25-1,5 м. Масса асбестоцементных листов в среднем 20 кг/м2. Стальные волнистые листы изготовляют из холоднокатаной стали толщиной от 1 до 1,8 мм. Высота волны h=30 и 35 мм. Масса 15-20 кг/м2. Алюминиевые волнистые листы имеют толщину 0,6 - 1,2 мм и массу 5 - 7 кг/м2. Волнистые листы крепят к прогонам с помощью специальных упругих кляммеров или крюков из круглой стали.
Для обеспечения водоотвода в местах стыков волнистые листы перепускают внахлестку на 150 - 200 мм, при этом уклон кровли для асбестоцементных листов должен быть не менее 1/4; а для стальных и алюминиевых — не менее 1/6.
Во избежание электрохимической коррозии в местах контакта алюминия со сталью при установке алюминиевых листов на стальные прогоны соприкасающиеся поверхности покрывают специальными грунтами (например, АЛГ) или применяют изолирующие прокладки. Стальные метизы для крепления листов нужно оцинковывать или кадмировать.
Рис.Теплая кровля со стальным профилированным настилом
а - профилированный настил; б - комбинированная заклепка; в - узел кровельного покрытия; 1 - стальной стержень; 2 - алюминиевая втулка; 3 - самонарезающий винт; 4- комбинированные
Беспрогонные покрытия
Для покрытий производственных зданий широко применяют различного вида крупнопанельные железобетонные плиты шириной 3 м и длиной 6 и 12 м. Продольные ребра плит опираются непосредственно в узлах верхнего пояса ферм и привариваются минимум по трем углам. Иногда в качестве доборных применяют плиты шириной 1,5 м. В этом случае верхний пояс ферм необходимо рассчитать с учетом местного момента от внеузловой передачи нагрузки или поставить дополнительные шпренгели, подкрепляющие верхний пояс в местах опирания плит. Типы плит покрытия и их характеристики указаны в каталогах типовых сборных железобетонных изделий.
Основной недостаток крупнопанельных железобетонных плит - их большой собственный вес (1,4 - 2,1 кН/м2), что утяжеляет все нижележащие конструкции каркаса здания.
Для снижения нагрузок от покрытия в последнее время находят применение металлические панели шириной 1,5 и 3 м и длиной 6 и 12 м. Масса таких панелей в 4 - 5 раз меньше, чем железобетонных. По сравнению с кровлей по прогонам металлические панели более индустриальны и позволяют значительную часть работ по устройству кровли перенести на заводы металлических конструкций или в специализированные мастерские. Однако расход стали на них по сравнению с прогонным решением несколько больше за счет дополнительных элементов, необходимых для обеспечения жесткости панелей при транспортировке и монтаже.
Утепленные стальные панели обычно состоят из каркаса, профилированного настила, эффективного утеплителя и гидроизоляционного слоя.
Неутепленные стальные панели применяются в покрытиях зданий со значительными тепловыделениями.
Панели с использованием алюминиевых сплавов отличаются малой массой и высокой коррозионной стойкостью. Однако из-за высокой стоимости алюминия их применение требует дополнительного технико-экономического обоснования.