Дисперсии доли альтернативного признака в совокупности

Показатели вариации

Методические указания к решению задач

по теме «Показатели вариации»

Для измерения степени варьирования (колеблемости) признака служит вариация, показателями которой являются: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, средний квадрат отклонений (дисперсия), коэффициент вариации.

Размах вариации

Размах вариации (R) характеризует пределы вариации (изменения) индивидуальных значений ( или вариантов) признака ( x ) в статистической совокупности

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - наибольшее и наименьшее значение признака.

Среднее линейное отклонение

Среднее линейное отклонение вычисляется по формулам средней арифметической:

- простой (невзвешенной)

Дисперсии доли альтернативного признака в совокупности - student2.ru ,

где Дисперсии доли альтернативного признака в совокупности - student2.ru - i-е значение признака x ;

Дисперсии доли альтернативного признака в совокупности - student2.ru - средняя величина признака x ;

Дисперсии доли альтернативного признака в совокупности - student2.ru - статистический вес i-го значения признака;

n - число членов совокупности;

- взвешенной

Дисперсии доли альтернативного признака в совокупности - student2.ru

Среднее квадратическое отклонение

Среднее квадратическое отклонение рассчитывается по формулам:

- невзвешенной

Дисперсии доли альтернативного признака в совокупности - student2.ru

- взвешенной

Дисперсии доли альтернативного признака в совокупности - student2.ru

Дисперсия количественного признака

Дисперсия количественного признака определяется по формулам средней арифметической:

- невзвешенной

Дисперсии доли альтернативного признака в совокупности - student2.ru

- взвешенной

Дисперсии доли альтернативного признака в совокупности - student2.ru

Дисперсия может быть рассчитана следующим образом:

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - средний квадрат значений признака;

Дисперсии доли альтернативного признака в совокупности - student2.ru - квадрат средней величины признака.

Свойства дисперсии количественного признака

1. При уменьшении или увеличении весов (частот) варьируюшего признака в K раз дисперсия не изменяется

Дисперсии доли альтернативного признака в совокупности - student2.ru

2. При уменьшении или увеличении каждого значения признака на одну и ту же постоянную величину А дисперсия не изменяется

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - среднее значение признака (x - A).

3. При уменьшении или увеличении каждого значения признака в одинаковое число K раз дисперсия уменьшается или увеличивается в K2 раз, а среднее квадратическое отклонение - в K раз

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - среднее значение признака xK .

4. Дисперсия признака относительно произвольной величины A всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной

Дисперсии доли альтернативного признака в совокупности - student2.ru

Доказательство:

Дисперсии доли альтернативного признака в совокупности - student2.ru

Дисперсия относительно средней величины

Дисперсии доли альтернативного признака в совокупности - student2.ru

При А = 0

Дисперсии доли альтернативного признака в совокупности - student2.ru

Способ моментов вычисления дисперсии

Метод упрощенного расчета дисперсии осуществляется по формуле

Дисперсии доли альтернативного признака в совокупности - student2.ru

и называется способом моментов.

Показатели m1, m2 представляют собой моменты первого и второго порядка и рассчитываются следующим образом

Дисперсии доли альтернативного признака в совокупности - student2.ru Дисперсии доли альтернативного признака в совокупности - student2.ru

Доказательство:

Дисперсии доли альтернативного признака в совокупности - student2.ru

Дисперсии количественного признака в совокупности,

Разделенной на группы

Для анализа связей количественных признаков в статистической совокупности, разделенной на группы, рассчитываются следующие дисперсии: групповая, межгрупповая, внутригрупповая и общая.

Групповая дисперсия (частная) характеризует вариацию признака в группе, обусловленную действием на него всех прочих факторов, кроме признака, положенного в основание группировки (группировочного признака):

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - i-е значение признака в j-й группе;

Дисперсии доли альтернативного признака в совокупности - student2.ru - частная (групповая) средняя величина признака в j-й группе;

Дисперсии доли альтернативного признака в совокупности - student2.ru - статистический вес i-го значения признака в j-й группе;

Дисперсии доли альтернативного признака в совокупности - student2.ru - число различных значений признака в j-й группе.

Межгрупповая дисперсия измеряет степень колеблемости (вариацию) признака во всей статистической совокупности за счет фактора, положенного в основание группировки (группировочного признака):

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - среднее значение признака в совокупности (общая средняя);

Дисперсии доли альтернативного признака в совокупности - student2.ru - вес j-й группы, представляющий собой численность единиц в j-й

группе;

J - количество групп в статистической совокупности.

Внутригрупповая дисперсия (средняя групповых дисперсий) измеряет степень колеблемости признака во всей совокупности в целом за счет действия на него всех прочих факторов (признаков), кроме группировочного признака:

Дисперсии доли альтернативного признака в совокупности - student2.ru

Общая дисперсия измеряет степень колеблемости признака, за счет влияния всех действующих на него факторов:

Дисперсии доли альтернативного признака в совокупности - student2.ru

Общая дисперсия признака в статистической совокупности, разделенной на группы, может быть определена по основной формуле дисперсии

Дисперсии доли альтернативного признака в совокупности - student2.ru

Межгрупповая и общая дисперсии применяются для определения показателей тесноты связи показателей в совокупности, разделенной на группы (см. п. 2.2.).

Дисперсия качественного альтернативного признака

Для определения дисперсии альтернативного признака допустим, что общее число единиц совокупности равно n . Число единиц, обладающих изучаемым признаком - f , тогда число единиц, не обладающих изучаемым признаком, равно (n-f ) . Ряд распределения качественного (альтернативного) признака имеет следующий вид

Значение переменной Частота повторений
f n-f
Итого n

Средняя арифметическая такого ряда равна:

Дисперсии доли альтернативного признака в совокупности - student2.ru

то есть равна относительной частоте (частости) появления изучаемого признака, которую можно обозначить через p , тогда Дисперсии доли альтернативного признака в совокупности - student2.ru

Доля единиц, обладающих изучаемым признаком равна p, доля единиц, не обладающих изучаемым признаком, равна q, тогда p+q =1.

Дисперсия доли альтернативного признака определяется по формуле

Дисперсии доли альтернативного признака в совокупности - student2.ru

Дисперсии доли альтернативного признака в совокупности,

Разделенной на группы

Дисперсия доли альтернативного признака в группе (групповая дисперсия) рассчитывается по формуле

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - доля единиц в j-й группе, обладающих изучаемым признаком;

Дисперсии доли альтернативного признака в совокупности - student2.ru - доля единиц в j-й группе, не обладающих изучаемым признаком.

Межгрупповая дисперсия доли признака

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - число единиц совокупности в j-й группе;

J - количество групп в статистической совокупности;

Дисперсии доли альтернативного признака в совокупности - student2.ru - средняя доля признака во всей совокупности, которая рассчитывается следующим образом

Дисперсии доли альтернативного признака в совокупности - student2.ru

Внутригрупповая дисперсия (средняя из групповых дисперсий)

Дисперсии доли альтернативного признака в совокупности - student2.ru

Общая дисперсия доли признака в статистической совокупности, разделенной на группы

Дисперсии доли альтернативного признака в совокупности - student2.ru

Общая дисперсия может быть также рассчитана как сумма средней из групповых дисперсий и межгрупповой дисперсии по правилу сложения дисперсий

Дисперсии доли альтернативного признака в совокупности - student2.ru

Коэффициент вариации

Коэффициент вариации вычисляется по формуле

Дисперсии доли альтернативного признака в совокупности - student2.ru

где Дисперсии доли альтернативного признака в совокупности - student2.ru - среднее квадратическое отклонение;

Дисперсии доли альтернативного признака в совокупности - student2.ru - средняя величина признака.

Коэффициент вариации выражается обычно в процентах и дает представление о степени однородности статистической совокупности. Если коэффициент меньше 25-30%, то статистическую совокупность по изучаемому признаку можно считать однородной.

Наши рекомендации