Оборудование для диагностики методами неразрушающего контроля.

Оборудование для диагностики методами неразрушающего контроля. - student2.ru Рисунок.1

Для диагностики методами неразрушающего контроля применяется ультразвуковой дефектоскоп — прибор, применяемый для контроля качества изделий из металлов и неметаллов с использованием методов неразрушающего контроля.

Метод предложенный С. Я. Соколовым в 1928 году и основанный на исследовании процесса распространения ультразвуковых колебаний с частотой 0,5 — 25 МГц в контролируемых изделиях с помощью специального оборудования — ультразвукового дефектоскопа. Является одним из самых распространенных методов неразрушающего контроля.

Принцип действия ультразвукового дефектоскопа.

Отпечаток на особенности анализа акустическим методом накладывает физика звука. Волна достаточно ощутимо может рассеиваться воздухом в силу его сопротивления звуку, поэтому при измерениях, поверхность образца определенным образом подготавливают.

Во-первых, делают её несколько шероховатой, причем если обследуют Оборудование для диагностики методами неразрушающего контроля. - student2.ru какую-то узкую полосу изделия, то наносимые зазубрины должны быть перпендикулярны этой полосе (например, сварной шов).

Во-вторых, для исключения сопротивления воздуха наносят каплю контактной жидкости, это может быть обычная вода или масло.

Сам ультразвуковой импульс генерируется посредством пьезоэффекта, хоть он и не единственный, но самый доступный. Определение обратного пьезоэффектического эффекта, на основе которого и создан преобразователь акустического дефектоскопа. Он берет сигнал от электрического генератора, а уже в образец заходят ультразвуковые волны. По возвращению УЗ-сигнал попадает на такой же преобразователь, но уже с прямым пьезоэффектом, поэтому становится возможным регистрация полученного сигнала в виде электрических импульсов.

Рисунок.2

Дефектоско́п (лат. defectus «недостаток»+ др.греч. σκοπέω «наблюдаю») — устройство для обнаружения дефектов в изделиях из различных металлических и неметаллических материалов методами неразрушающего контроля. К дефектам относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения хим. состава и размеров и др. Область техники и технологии, занимающаяся разработкой и использованием дефектоскопов называется дефектоскопия. С дефектоскопами функционально связаны и другие виды средств неразрушающего контроля: течеискатели,толщиномеры, твердомеры, структуроскопы, интроскнеразрушающего опы и стилоскопы.

Применение.

Дефектоскопы используются в транспорте, различных областях машиностроения, химической промышленности, нефтегазовой промышленности, энергетике, строительстве, научно-исследовательских лабораториях для определения свойств твердого тела и молекулярных свойств и в других отраслях; применяются для контроля деталей и заготовок, сварных, паяных и клеевых соединений, наблюдения за деталями агрегатов. Некоторые дефектоскопы позволяют проверять изделия, движущиеся со значительной скоростью (например, трубы в процессе прокатки), или сами могут передвигаться с большой скоростью относительно изделия (например, рельсовые дефектоскопы, тележки и вагоны-дефектоскопы). Существуют Оборудование для диагностики методами неразрушающего контроля. - student2.ru дефектоскопы для контроля изделий, нагретых до высокой температуры.

Исследование.

В процессе моей работы мной были изучены теоретические сведения о методах неразрушающего контроля, а также исследованы приборы, оборудование и их современные аналоги, с помощью которых ведется (осуществляется) диагностика методами неразрушающего контроля.

В импульсных дефектоскопах используются эхо-метод, теневой и зеркально-теневой методы контроля.

v Эхо-метод основан на посылке в изделие коротких импульсов ультразвуковых колебаний и регистрации интенсивности и времени прихода эхосигналов, отражённых от несплошностей (дефектов). Для контроля изделия датчик эходефектоскопа сканирует его поверхность. Метод позволяет обнаруживать поверхностные и глубинные дефекты с различной ориентировкой.

v При теневом методе ультразвуковые колебания, встретив на своём пути дефект, отражаются в обратном направлении. О наличии дефекта судят по уменьшению энергии ультразвуковых колебаний или по изменению фазы ультразвуковых колебаний, огибающих дефект. Метод широко применяют для контроля сварных швов, рельсов и др.

v Зеркально-теневой метод используют вместо или в дополнение к эхо-методу для выявления дефектов, дающих слабое отражение ультразвуковых волн в направлении раздельно-совмещенного преобразователя. Дефекты (например, вертикальные трещины), ориентированные перпендикулярно поверхности, по которой перемещают преобразователь(поверхности ввода), дают очень слабый рассеянный и донный сигналы благодаря тому, что на их поверхности продольная волна трансформируется в головную, которая в свою очередь излучает боковые волны, уносящие энергию. Пример применения зеркально-теневого метода — контроль рельсов на вертикальные трещины в шейке. По Оборудование для диагностики методами неразрушающего контроля. - student2.ru чувствительности этот метод обычно в 10—100 раз хуже эхо-метода.

При контроле сварных соединений необходимо обеспечивать тщательное прозвучивание всего металла шва. Ультразвуковые волны вводятся в шов через основной металл с помощью наклонных акустических преобразователей. При поиске дефектов производят продольно-поперечное перемещение (сканирование) преобразователя вдоль шва, одновременно осуществляя его вращательное движение. Чувствительность ультразвукового контроля определяется минимальными размерами выявляемых дефектов или эталонных отражателей (моделей дефектов). В качестве эталонных отражателей обычно используют плоскодонные сверления, ориентированные перпендикулярно направлению прозвучивания, а также боковые сверления или зарубки.

Импедансные дефектоскопы.

Принцип работы основан на определении отличия полного механического сопротивления (импеданса) дефектного участка по сравнению с доброкачественным, для чего контролируемая поверхность сканируется с помощью двух пьезоэлементов, один из которых возбуждает колебания в материале, а другой воспринимает колебания. Импедансные дефектоскопы предназначены для обнаружения дефектов, расслоений, непроклеев, пористости и нарушения целостности композитных материалов и сотовых структур в авиастроении, космической, автомобильной и других отраслях промышленности.

Резонансные дефектоскопы.

Резонансный метод основан на определении собственных резонансных частот упругих колебаний (частотой 1—10 МГц) при возбуждении их в изделии. Этим методом измеряют толщину стенок металлических и некоторых неметаллических изделий. При возможности измерения с одной стороны погрешность измерения — около 1 %. Кроме того, при помощи резонансной дефектоскопии можно выявлять зоны коррозионного поражения. Вариантом резонансного метода является спектрально-акустическая дефектоскопия.

Наши рекомендации