Правило Марковникова.Эффект Хараша.

Марковникова правило: при присоединении протонных кислот или воды к несимметричным алкенам или алкинам атом водорода присоединяется к наиболее гидрогенизированному (гидрированному) атому углерода (в месте разрыва двойной связи). Названо по имени его автора В. В. Марковникова и сформулировано им в 1869 году.

Правило Марковникова объясняется +I-эффектом (положительным индуктивным электронным эффектом) алкильных групп. Например, в молекуле пропилена СН3–СН=СН2, метильная группа СН3, за счет суммирования небольшой полярности трех С–Н связей, является донором электронов и проявляет +I-эффект по отношению к соседним атомам углерода. Это вызывает смещение подвижных p-электронов двойной связи в сторону более гидрогенизированного атома углерода (в группе =СН2), и появлению на нем частичного отрицательного заряда δ-.


На менее гидрогенизированном атоме углерода (в группе -СН=) возникает частичный положительный заряд (δ+). Поэтому присоединение электрофильной частицы Н+ происходит к более гидрогенизированному углеродному атому, а электроотрицательная группа Х присоединяется к менее гидрогенизированному атому углерода. Кроме того, следует учитывать также относительную устойчивость промежуточных частиц (карбокатионов), образующихся на лимитирующей стадии реакции, поскольку реакция идет в том направлении, на котором образуются наиболее устойчивые частицы и, соответственно, более низкая энергия активации.



Устойчивость карбокатиона возрастает с увеличением числа алкильных групп, которые за счет +I-эффекта уменьшают положительный заряд на атоме углерода:

Исключения:

Современная электронная трактовка правила Марковникова позволяет объяснить и ряд случаев присоединения против этого правила. Так, присоединение электрофильных и нуклеофильных агентов к соединениям с сопряжёнными связями, содержащим электроотрицательную группировку у атома углерода двойной связи, происходит против правила Марковникова в соответствии со смещением электронной плотности к наиболее электроотрицательным атомам, например:

Правило Марковникова нарушается также в реакциях присоединения HBr к олефинам в присутствии перекисей (эффект Хараша), так как механизм реакции в этом случае радикальный. Атакующей частицей является атомарный бром, а ориентация присоединения определяется стабильностью промежуточно образующегося углеродного свободного радикала:

[править] Мнемоническое правило

Найдешь ли справедливость тут,
Где действуют двойные связи:
Где много водорода — так ещё дадут,
Где мало — так отнимут сразу!

Радикальное присоединение

Радикальное присоединение к двойной связи С=С. Перекисный эффект Хараша.

Наиболее изучено открытое Харашем в 1932 г. радикальное присоединение бромистого водорода, инициируемое следами перекиси и ингибируемое гидрохиноном. Открытие механизма радикального присоединения к двойным связям положило конец противоречиям, наблюдаемым у многочисленных исследователей при присоединении бромистого водорода к несимметричным алкенам: у одних эта реакция приводила к продуктам присоединения против правила Марковникова, у других – по правилу Марковникова, у третьих получалась смесь продуктов. Всему виной оказалось то, что у разных исследователей реакции протекали в различных условиях (и, соответственно, по различным механизмам), что и приводило к неоднозначным продуктам. При проведении реакции в условиях, характерных для протекания цепных процессов (газовая фаза, в индифферентном растворителе при освещении, присутствие следов перекисей), в качестве интермедиатов образуются радикалы:

H-Br --- H. + Br.

или:

а) R-O-O-R ---- 2 R-O.,

б) H-Br + R-O. ---- R-OH + Br..

Далее протекает реакция с алкеном, причем алкен атакуется радикалом галогена:

Реакция завершается взаимодействием более стабильного радикала полупродукта со «свежей молекулой» HBr, при этом регенерируется радикал Br..

Цепная реакция обрывается в результате диспропорционирования радикалов, либо при взаимодействии с молекулами ингибиторов:

Ряд устойчивости радикалов аналогичен ряду устойчивости карбкатионов:

Первичные < вторичные < третичные << аллильные, бензильные

Полимеризация алкенов.

Полимеризация алкенов

1. Полимеризация – реакция образования высокомолекулярного соединения (полимера) путем последовательного присоединения молекул низкомолекулярного вещества (мономера) по схеме:

n M Mn

Число n в формуле полимера (Mn) называется степенью полимеризации. Реакции полимеризации алкенов идут за счёт присоединения по кратным связям:

Подробнее процесс полимеризации и понятие о полимерах, имеющих исключительно важное практическое значение, рассматриваются в части VI "Высокомолекулярные соединения".

2. Димеризация алкенов – образование димера (удвоенной молекулы) в результате реакции присоединения. В присутствии минеральной кислоты (донора протона Н+) происходит присоединение протона по двойной связи молекулы алкена. При этом образуется карбокатион:

Этот карбокатион присоединяется к следующей молекуле алкена с образованием "димерного карбокатиона":

"Димерный карбокатион" стабилизируется путем выброса протона, что приводит к продуктам димеризации алкена – смеси изомерных диизобутиленов (2,4,4-триметипентена-2 и 2,4,4-триметилпентена-1):

Этот процесс протекает при обработке изобутилена (2-метипропена) 60% серной кислотой при температуре 70°С. Образовавшаяся в результате смесь диизобутиленов подвергается гидрированию с целью получения "изооктана" (2,2,4-триметилпентана), который применяется для улучшения антидетонационной способности бензина ("изооктан" – стандарт моторного топлива с октановым числом 100).

Подобно реакции димеризации алкенов происходит их полимеризация, только процесс не останавливается на стадии образования димера, а идет дальше и включает в себя множество стадий присоединения молекул алкена к растущему карбокатиону.

Озонолиз этиленовых УВ.

Озонолиз алкенов обычно проводят при низких температурах (от −80 до −30 °C) в инертном растворителе (гексан, тетрахлорметан, хлороформ, этилацетат и пр.). Непосредственные продукты озонолиза не выделяют, а подвергают дальнейшему гидролизу, окислению или восстановлению[37].

  • Озонолиз в мягких условиях: алкен окисляется до альдегидов (в случае монозамещенных вицинальных углеродов), кетонов (в случае дизамещенных вицинальных углеродов) или смеси альдегида и кетона (в случае три-замещенного у двойной связи алкена).

На первой стадии происходит присоединение озона с образованием озонида. Далее под действием восстановителя (например: Zn + CH3COOH) озонид разлагается:

Если взять более сильный восстановитель, скажем — алюмогидрид лития, продуктом реакции будут спирты.

  • Озонолиз в жёстких условиях — алкен окисляется до кислоты:

В данном случае разложение озонида происходит под действием окислителей (пероксид водорода, оксид серебра, пероксикислоты и пр.[37]).

Наши рекомендации