Искусственный интеллект. Основные разделы искусственного интеллекта. Основные проблемы искусственного интеллекта.
Одно из направлений информатики - интеллектуализация информационных систем. Интеллектуальные системы и технологии применяются для тиражирования профессионального опыта и решения сложных научных, производственных и экономических задач, например, анализ инвестиций, прогнозирование рынка и т.д. Для обработки и моделирования знаний применяются специальные модели и создаются так называемые базы знаний.
Искусственные интеллект (ИИ) - одно из направлений развития информатики, изучающий способы и приемы моделирования и воспроизведения с помощью ЭВМ разумной деятельности человека, связанной с решением задач. Цель этого направления - разработка программно-аппаратных средств, позволяющих пользователю-непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка. Искусственным интеллектом также называют свойство интеллектуальных систем выполнять функции (творческие), которые традиционно считаются прерогативой человека.
Фундаментальные разделы ИИ:
1. теория представления знаний: найти такие способы описания и представления фактов, общих сведений, закономерностей, правил и предписаний, которые позволят использовать все эти знания с помощью некоторых универсальных и формальных процедур анализа, рассуждения и синтеза, доступных доля простой реализации на ЭВМ;
2. теория обработки информации, выраженной на естественном языке: найти методы и способы понимания устной речи, извлечения смысла из письменных сообщений, переводы с одного языка на другой, синтеза речи и т.п. с тем, чтобы реализовать все эти формы языковой практики на ЭВМ (лингвистические процессоры).
Фундаментальные разделы ИИ, воспринимая достижения смежных наук (математики, логики, психологии, физиологии, кибернетики, бионики, лингвистики и др.), результируют в создании теоретических моделей целенаправленного поведения человека, включая такие его компоненты, как восприятие, рассуждение и действие. Эти теоретические модели, имея собственную познавательную ценность, выступают в качестве строительных блоков в решении различных прикладных задач.
Основные направления развития искусственного интеллекта.
Основные направления развития искусственного интеллекта.
•Представление знаний и разработка систем, основанных на знаниях
Разработка моделей представления знаний, создание баз знаний, моделей и методов извлечения и структурирования знаний).
•Игры и творчество
•Разработка естественно-языковых интерфейсов и машинный перевод
Естественно-языковый интерфейс - это совокупность программных и аппаратных средств, обеспечивающих общение интеллектуальной системы с пользователем на ограниченном рамками проблемной области естественном языке. В его состав входят словари, отражающие словарный состав и лексику языка, а также лингвистический процессор, осуществляющий анализ текстов (морфологический, синтаксический, семантический и прагматический) и синтез ответов пользователю.
•Распознавание образов
Это направление, основной задачей которого является создание моделей, методов и средств, связанных с решением задач классификации, таксономии, формирования понятий и т. п.
•Новые архитектуры компьютеров
•Интеллектуальные роботы
Здесь главными задачами ИИ являются задачи «машинного зрения» и управления движением. «Машинное зрение» включает в себя способность робота ориентироваться в пространстве, воспринимать обстановку и строить ее план (т.н. анализ сцен), узнавать контуры и форму предметов, обнаруживать и обходить препятствия при движении и т.д. Управление движением позволяет роботу перемещаться, совершать рабочие движения своими подвижными элементами, воспринимать нагрузку и дозировать собственные усилия.
•Специальное программное обеспечение
Обучение и самообучение
Данные и знания.
Информация, с которой имеют дело ЭВМ, разделяется на процедурную и декларативную. Процедурная информация овеществлена в программах, которые выполняются в процессе решения задач, декларативная информация - в данных, с которыми эти программы работают.
Данные - это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.
Параллельно с развитием структуры ЭВМ происходило развитие информационных структур для представления данных. Появились способы описания данных в виде векторов и матриц, возникли списочные структуры, иерархические структуры. В настоящее время в языках программирования высокого уровня используются абстрактные типы данных, структура которых задается программистом. Появление баз данных (БД) знаменовало собой еще один шаг на пути организации работы с декларативной информацией. В базах данных могут одновременно храниться большие объемы информации, а специальные средства, образующие систему управления базами данных (СУБД), позволяют эффективно манипулировать с данными, при необходимости извлекать их из базы данных и записывать их в нужном порядке в базу.
По мере развития исследований в области интеллектуальных систем возникла концепция знаний, которые объединили в себе многие черты процедурной и декларативной информации.
Знания - совокупность сведений, образующих целостное описание, соответствующее некоторому уровню осведомленности об описываемом вопросе, предмете, проблеме и т.д. Знания - это выявленные закономерности в предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.
В ЭВМ знания так же, как и данные, отображаются в знаковой форме - в виде формул, текста, файлов, информационных массивов и т.п. Поэтому можно сказать, что знания - это особым образом организованные данные. Но это было бы слишком узкое понимание. А между тем, в системах ИИ знания являются основным объектом формирования, обработки и исследования. База знаний, наравне с базой данных, - необходимая составляющая программного комплекса ИИ. Машины, реализующие алгоритмы ИИ, называются машинами, основанными на знаниях, а подраздел теории ИИ, связанный с построением экспертных систем, - инженерией знаний.
Знания могут быть классифицированы по следующим категориям:
•поверхностные - знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;
•глубинные - абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области.
Кроме того, знания можно разделить на следующие виды:
•процедурные: знания, отвечающие на вопрос «Как решать поставленную задачу?»; эти знания хранятся в памяти интеллектуальной системы в виде описаний процедур, с помощью которых их можно получить. В таком виде обычно описывается информация о предметной области, характеризующая способы решения задач в этой области, а также различные инструкции, методики и т.п.
декларативные: знания, не содержащие в явном виде процедуры решения задач; которые записаны в памяти так, что они непосредственно доступны для использования после обращения к соответствующему полю памяти. В таком виде обычно записывается информация о свойствах предметной области фактах, имеющих в ней место и т.п. информация.