Дуплексный и полудуплексный режимы работы
Стандарт IEEE 802.3-2012 определяет два режима работы МАС-подуровня:
● полудуплексный (half-duplex) – использует метод CSMA/CD для доступа узлов к разделяемой среде. Узел может только принимать или передавать данные в один момент времени, при условии получения доступа к среде передачи;
● полнодуплексный (full-duplex) – позволяет паре узлов, имеющих соединение «точка-точка», одновременно принимать и передавать данные. Для этого каждый узел должен быть подключен к выделенному порту коммутатора.
Метод доступа CSMA/CD
Основная идея Ethernet состояла в использовании шинной топологии на основе коаксиального кабеля. Кабель использовался как разделяемая среда передачи, по которой рабочие станции, подключенные к сети, выполняли широковещательную двунаправленную (во всех направлениях) передачу. На обоих концах кабеля устанавливались терминаторы (заглушки).
Рис. 5.21 Сеть Ethernet
Поскольку использовалась общая среда передачи, то требовался контроль над доступом узлов к физической среде. Для организации доступа узлов к разделяемой среде передачи был использован метод множественного доступа с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access With Collision Detection, CSMA/CD).
Метод CSMA/CD основан на конкуренции (contention) узлов за право доступа к сети и включает следующие процедуры:
● контроль несущей;
● обнаружение коллизий.
Перед тем, как начать передачу, сетевое устройство должно удостовериться, что среда передачи данных свободна. Это достигается путем прослушивания несущей. Если среда свободна, то устройство начинает передавать данные. Во время передачи кадра, устройство продолжает прослушивать среду передачи. Делается это для того, чтобы гарантировать, что никакое другое устройство не начало передачу данных в то же самое время. После окончания передачи кадра все устройства сети должны выдержать технологическую паузу (Inter Packet Gap), равную 9,6 мкс. Эта пауза называется межкадровым интервалом и нужна для приведения в исходное состояние сетевых адаптеров и для предотвращения монопольного захвата среды одним сетевым устройством. После окончания технологической паузы устройства имеют право начать передачу своих кадров, т.к. среда свободна.
Сетевые устройства могут начинать передачу данных в любой момент, когда они определят, что канал свободен. Если устройство попыталось начать передачу кадра, но обнаружило, что сеть занята, оно вынуждено ждать, пока передающий узел не закончит передачу.
Рис. 5.22 Передача кадра в сети Ethernet
Ethernet – это широковещательная среда, поэтому все станции получают все кадры, передаваемые по сети. Однако не все устройства будут обрабатывать эти кадры. Только то устройство, МАС-адрес которого совпадает с МАС-адресом назначения, указанным в заголовке кадра, копирует содержимое кадра во внутренний буфер. Затем устройство проверяет кадр на наличие ошибок, и если их нет, передает полученные данные вышележащему протоколу. В противном случае, кадр будет отброшен. Устройство-отправитель не уведомляется, успешно доставлен кадр или нет.
В сетях Ethernet неизбежны конфликты (коллизии), т.к. возможность их возникновения заложена в самом алгоритме CSMA/CD. Это связано с тем, что между моментом передачи, когда сетевое устройство проверяет, свободна ли сеть, и моментом начала фактической передачи проходит какое-то время. Возможно, что в течение этого времени какое-нибудь другое устройство сети начнет передачу.
Если несколько устройств в сети начали передачу примерно в одно и то же время, битовые потоки, поступающие от разных устройств, сталкиваются друг с другом и искажаются, т.е. происходит коллизия. В этом случае каждое из передающих устройств должно быть способно обнаружить коллизию до того, как закончит передачу своего кадра. Обнаружив коллизию, устройство прекращает передачу кадра и усиливает коллизию посылкой в сеть специальной последовательности из 32 бит, называемой jam-последовательностью. Это делается для того, чтобы все устройства сети смогли распознать коллизию. После того, как все устройства распознали коллизию, каждое устройство отключается на некоторый случайно выбранный интервал времени (свой для каждой станции сети). Когда время истечет, устройство опять может начать передачу данных. Когда передача возобновится, устройства, вовлеченные в коллизию, не имеют приоритета по передаче данных над остальными устройствами сети.
Если 16 попыток передачи кадра вызывают коллизию, то передатчик должен прекратить попытки и отбросить этот кадр.
Рис. 5.23 Обнаружение коллизий в сети Ethernet
Домен коллизий
В полудуплексной технологии Ethernet независимо от стандарта физического уровня существует понятие домена коллизий.
Домен коллизий (collision domain) – это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети она возникла.
Сеть Ethernet, построенная на повторителях и концентраторах, образует один домен коллизий.
Напомним, что повторитель представлял собой устройство физического уровня модели OSI, используемое для соединения сегментов среды передачи данных с целью увеличения общей длины сети.
В сетях Ethernet (спецификации 10BASE2 и 10BASE5) на основе коаксиального кабеля применялись двухпортовые повторители, связывающие два физических сегмента. Работал повторитель следующим образом: он принимал сигналы из одного сегмента сети, усиливал их, восстанавливал синхронизацию и передавал в другой. Повторители не выполняли сложную фильтрацию и другую обработку трафика, т.к. не являлись интеллектуальными устройствами. Также общее количество повторителей и соединяемых ими сегментов было ограничено из-за временных задержек и других причин.
Позже появились многопортовые повторители, к которым рабочие станции подключались отдельным кабелем. Такие многопортовые повторители получили название «концентраторы». Причина появления многопортовых повторителей была следующей. Поскольку оригинальная технология Ethernet использовала в качестве среды передачи коаксиальный кабель и шинную топологию, то было сложно прокладывать кабельную систему здания. Позже международный стандарт на структурированную кабельную систему зданий определил использование топологии «звезда», в которой все устройства подключались к единой точке концентрации с помощью кабелей на основе витой пары. Под эти требования отлично подходила технология Token Ring и поэтому, чтобы выжить в конкурентной борьбе, технологии Ethernet пришлось адаптироваться к новым требованиям. Так появилась спецификация 10BASE-T Ethernet, которая использовала в качестве среды передачи кабели на основе витой пары и топологию «звезда».
Концентраторы работали на физическом уровне модели OSI. Они повторяли сигналы, поступившие с одного из портов на все остальные активные порты, предварительно восстанавливая их, и не выполняли никакой фильтрации трафика и другой обработки данных. Поэтому логическая топология сетей, построенных с использованием концентраторов, всегда оставалась шинной.
В один момент времени в сетях, построенных на повторителях и концентраторах, мог передавать данные только один узел. В случае одновременного поступления сигналов в общую среду передачи возникала коллизия, которая приводила к повреждению передаваемых кадров. Таким образом, все подключенные к таким сетям устройства находились в одном домене коллизий.
Рис. 5.24 Домен коллизий
С увеличением количества сегментов сети и компьютеров в них, возрастало количество коллизий, и пропускная способность сети падала. Помимо этого, полоса пропускания сегмента делилась между всеми подключенными к нему устройствами. Например, при подключении к сегменту с пропускной способностью 10 Мбит/с десяти рабочих станций, каждое устройство могло передавать в среднем со скоростью не более 1 Мбит/с. Встала задача сегментации сети, т.е. разделения пользователей на группы (сегменты) в соответствии с их физическим размещением, с целью уменьшения количества клиентов, соперничающих за полосу пропускания.
Коммутируемая сеть Ethernet
Задача сегментации сети и повышения ее производительности была решена с помощью устройства, называемого мостом (bridge). Мост был разработан инженером компании Digital Equipment Corporation (DEC) Радьей Перлман (Radia Perlman) в начале 1980-х годов и представлял собой устройство канального уровня модели OSI, предназначенное для объединения сегментов сети. Мост был изобретен немного позже маршрутизаторов, но так как он был дешевле и прозрачен для протоколов сетевого уровня (работал на канальном уровне), то стал широко применяться в локальных сетях. Мостовые соединения (bridging) являются фундаментальной частью стандартов для локальных сетей IEEE.
Мост работал по алгоритму прозрачного моста (transparent bridge), который определен стандартом IEEE 802.1D. Прежде чем переслать кадры из одного сегмента в другой, он анализировал их и передавал только в том случае, если такая передача действительно была необходима, то есть МАС-адрес рабочей станции назначения принадлежал другому сегменту. Таким образом, мост изолировал трафик одного сегмента от трафика другого и делил один большой домен коллизий на несколько небольших, что повышало общую производительность сети. Однако мост передавал широковещательные кадры (например, необходимые для работы протокола ARP) из одного сегмента в другой, поэтому все устройства сети находились в одном широковещательном домене (Broadcast domain).
Подробнее алгоритм прозрачного моста будет рассмотрен в главе 6.
Коммутируемая сеть Ethernet(Ethernet switched network) – сеть Ethernet, сегменты которой соединены мостами или коммутаторами
Рис. 5.25 Соединение двух сегментов сети в помощью моста
Так как мосты были обычно двухпортовыми устройствами, то их эффективность сохранялась лишь до тех пор, пока количество рабочих станций в сегменте оставалось относительно невелико. Как только оно увеличивалось, в сетях возникала перегрузка, которая приводила к потере пакетов данных.
Увеличение количества устройств, объединяемых в сети, повышение мощности процессоров рабочих станций, появление мультимедийных приложений и приложений клиент-сервер требовали большей полосы пропускания. В ответ на эти растущие требования фирмой Kalpana в 1990 г. на рынок был выпущен первый коммутатор (switch), получивший название EtherSwitch.
Коммутатор представляет собой многопортовый мост и также функционирует на канальном уровне модели OSI. Основное отличие коммутатора от моста заключается в том, что он производительнее, может устанавливать одновременно несколько соединений между разными парами портов и поддерживает развитый функционал.
Рис. 5.26 Локальная сеть, построенная на коммутаторах
В 1993 году фирма Kalpana внедрила полнодуплексную технологию Ethernet (Full Duplex Ethernet Switch, FDES) в свои коммутаторы. Через какое-то время, при разработке технологии Fast Ethernet полнодуплексный режим работы стал частью стандарта IEEE 802.3.
Работа в полнодуплексном режиме обеспечивает возможность одновременного приема и передачи информации, т.к. к среде передачи подключены только два устройства. Прием и передача ведутся по двум разным физическим каналам «точка-точка». Например, по разным парам кабеля на основе витой пары или разным волокнам оптического кабеля.
Благодаря этому исключается возникновение коллизий в среде передачи (больше не требуется метод CSMA/CD, т.к. отсутствует конкуренция за доступ к среде передачи), увеличивается время, доступное для передачи данных, и удваивается полезная полоса пропускания канала. Каждый канал обеспечивает передачу на полной скорости. Например, для спецификации 10BASE-T каждый канал передает данные со скоростью 10 Мбит/с. Для спецификации 100BASE-TX – со скоростью 100 Мбит/с. На концах дуплексного соединения скорость соединения удваивается, т.к. данные могут одновременно передаваться и приниматься. Например, в спецификации 1000BASE-T, в которой данные передаются по каналам со скоростью 1000 Мбит/с, суммарная пропускная способность будет равна 2000 Мбит/с.
Рис. 5.27 Передача данных в дуплексном режиме
Также благодаря полнодуплексному режиму исчезло ограничение на общую длину сети и количество устройств в ней. Осталось только ограничение на длину кабелей, соединяющих соседние устройства.
Работа в полнодуплексном режиме возможна только при соединении сетевых устройств, порты которых его поддерживают. Если к порту устройства подключается сегмент, представляющий собой разделяемую среду, то порт будет работать в полудуплексном режиме и распознавать коллизии. Порты современных сетевых устройств поддерживают функцию автоопределения полудуплексного или дуплексного режима работы.
При работе порта в полнодуплексном режиме, интервал отправки между последовательными кадрами не должен быть меньше технологической паузы, равной 9,6 мкс. Для того чтобы исключить переполнение приемных буферов устройств при работе в полнодуплексном режиме, требуется использовать механизм управления потоком кадров.
Следует отметить, что спецификации 10, 40 и 100 Gigabit Ethernet поддерживают только полнодуплексный режим работы. Это связано с тем, что современные сети стали полностью коммутируемыми, и коммутаторы при взаимодействии с другими коммутаторами или высокоскоростными сетевыми адаптерами практически всегда используют режим полного дуплекса.