Аппроксимация модели методом В. Я. Ротача

Рассмотрим аппроксимацию модели объекта в виде последовательного соединения апериодических звеньев и звена запаздывания с обобщенной передаточной функцией вида [12]:

Аппроксимация модели методом В. Я. Ротача - student2.ru (13)

где Т1 и Т2 – постоянные времени, Аппроксимация модели методом В. Я. Ротача - student2.ru – время запаздывания, n – порядок системы, k – коэффициент передачи объекта.

Критериями приближения модели к рассматриваемому реальному объекту принимаются требования совпадения переходных характеристик модели hМ(t) и реального объекта h(t) в точках t=0, t→∞, а также вточке перегиба ti, которая определяется из условия:

Аппроксимация модели методом В. Я. Ротача - student2.ru

Причем в точке перегиба ti указанные характеристики должны иметь и одинаковый наклон. Сформулированные требования предс­тавим в виде системы уравнений:

Аппроксимация модели методом В. Я. Ротача - student2.ru (14)

Для определения производной Аппроксимация модели методом В. Я. Ротача - student2.ru переходной характеристики h(t) вточке, где эта характеристика имеет максимальный наклон проводят касательную и находят длину отрезка То (рис. 27).

Учитывая введенные на рис. 29 обозначения критерии приближения модели к рассматриваемому объекту (14) запишем следующим образом:

Аппроксимация модели методом В. Я. Ротача - student2.ru (15)

где Аппроксимация модели методом В. Я. Ротача - student2.ru .

Аппроксимация модели методом В. Я. Ротача - student2.ru

Рисунок 29 – Аппроксимация промышленного объекта упрощенными моделями с использованием метода В. Я. Ротача: 1 – экспериментальная переходная характеристика объекта; 2 – переходная характеристика модели (первого порядка) объекта;
3 – переходная характеристика модели (второго порядка) объекта

Рассмотрим аппроксимацию технологического объекта математическими моделями первого и второго порядка.

1. Аппроксимация объекта моделью, состоящей изстатического апериоди­ческого звена первого порядка извена запаздывания:

Аппроксимация модели методом В. Я. Ротача - student2.ru .

Значение коэффициента передачи звена равна установившемуся значению переходной функции: Аппроксимация модели методом В. Я. Ротача - student2.ru . Два последних требования из системы уравнений (15) запишем, как:

Аппроксимация модели методом В. Я. Ротача - student2.ru (16)

Из выражения (16) рассчитаем постоянную времени Т1 модели объекта Аппроксимация модели методом В. Я. Ротача - student2.ru и момент времени, при котором выполняется условие аппроксимации:

Аппроксимация модели методом В. Я. Ротача - student2.ru .

Затем, по известному значению ti, определяется время запаздывания:

Аппроксимация модели методом В. Я. Ротача - student2.ru

Переходная характеристика hМ(t) модели изображена на рис. 29 пунктирной кривой (2).

На практике, в качестве постоянной времени T1принимают величину Т0, а время запаздывания τЗАП принимают равным τЗАП3. Подобное упрощение допускается лишь при малых значениях b (b<0.05).

2. Аппроксимация объекта моделью, состоящей из последовательно соединенных двух апериоди­ческих звеньев и звена запаздывания:

Аппроксимация модели методом В. Я. Ротача - student2.ru .

Переходная характеристика без учета звена запаздывания может быть определена из таблицы преобразования Лапласа следующим образом:

Аппроксимация модели методом В. Я. Ротача - student2.ru (17)

Выражение для первой и второй производных переходной функции по времени получим как:

Аппроксимация модели методом В. Я. Ротача - student2.ru (18)

Аппроксимация модели методом В. Я. Ротача - student2.ru (19)

Для того, чтобы определить координаты точки перегиба i приравняем к нулю выражение (19) для второй производной переходной функции:

Аппроксимация модели методом В. Я. Ротача - student2.ru (20)

Выразив из уравнения (20) Аппроксимация модели методом В. Я. Ротача - student2.ru и подставив в формулы (17) и (18), получим систему уравнений вида:

Аппроксимация модели методом В. Я. Ротача - student2.ru (21)

Введем безразмерные переменные Аппроксимация модели методом В. Я. Ротача - student2.ru и Аппроксимация модели методом В. Я. Ротача - student2.ru и перепишем формулы (20) и (21) как:

Аппроксимация модели методом В. Я. Ротача - student2.ru (22)

Решая систему трансцендентных уравнений (22) при известных значениях Т0 и b, опре­делим параметры модели T1, T2 и ti. Если при этом окажется, чтонайденная координата аппроксимирующей модели ti меньше значенияti, рассчитанного по графику переходной характеристики, то следует ввести время запаздывания:

Аппроксимация модели методом В. Я. Ротача - student2.ru .

Аппроксимация объекта моделью второго порядка допустима лишь при b<0.265. Это предельное значение b для апериодического звена второго порядка, которое наступает при T1=T2.

Вычисления параметров моделей для любого порядкаn производятся аналогично. На практике оказывается достаточным выбирать n<4, что соответствует b<0.371. Выше приведенные расчеты па­раметров модели удобно проводить с помощью номограммы (рис. 30).

Аппроксимация модели методом В. Я. Ротача - student2.ru

Рисунок 30 – Номограмма для определения параметров объектов [14]

Порядок нахождения параметров модели с использованием номограммы состоит в следующем:

1. По экспериментальной переходной характеристике Аппроксимация модели методом В. Я. Ротача - student2.ru определяются значения Аппроксимация модели методом В. Я. Ротача - student2.ru и Аппроксимация модели методом В. Я. Ротача - student2.ru .

2. В зависимости от значения Аппроксимация модели методом В. Я. Ротача - student2.ru выбирается порядок модели n.

3. По номограмме, для полученных b и n, определяются отношения Аппроксимация модели методом В. Я. Ротача - student2.ru , знание которых позволяет вычислить параметры модели: T1, Т2 и ti, а также Аппроксимация модели методом В. Я. Ротача - student2.ru .

Определим параметры модели исследуемого технологического объекта – ресивера. Исходные данные для выбранной точки перегиба по переходной характеристике (рис. 26) с координатами Аппроксимация модели методом В. Я. Ротача - student2.ru следующие:

К=1.1, Аппроксимация модели методом В. Я. Ротача - student2.ru (соответствуетBD).

По номограмме (рис. 30) для уровня b=0.327выбираем кривую соответствующую минимальному порядку системы n=3, и соотношение параметров модели объекта:

Аппроксимация модели методом В. Я. Ротача - student2.ru , Аппроксимация модели методом В. Я. Ротача - student2.ru , Аппроксимация модели методом В. Я. Ротача - student2.ru .

Таким образом, передаточная функция модели технологического объекта запишется в виде:

Аппроксимация модели методом В. Я. Ротача - student2.ru

Структурная схема технологического объекта управления с учетом принятой структуры и рассчитанных значений параметров показана на рис. 31.

Аппроксимация модели методом В. Я. Ротача - student2.ru

Рисунок 31 –Структурная схема модели объекта,аппроксимированная по методу В.Я. Ротача

Аппроксимация модели методом В. Я. Ротача - student2.ru

Рисунок 32 – Переходная характеристика модели ТОУ аппроксимированная пометоду В. Я. Ротача

По переходной характеристике (рис.32), полученной для аппроксимированной модели объекта методом В.Я.Ротача

- время нарастания (Risetime) – 27,7 с;

- переходного процесса (Settingtime) – 51,7с;

- установившееся значение выходной величины (Finalvalue) – 1,1 с;

- пиковая амплитуда (Peakamplitude) – 1,1;

- перерегулирование (Overshoot) – 0%;

- статическая ошибка – 10%.

Для проведения сравнительного анализа адекватности расчетных моделей графики кривых разгона для моделей технологического объекта управления полученной в результате идентификации, а также аппроксимации представлены на рис. 33.

Аппроксимация модели методом В. Я. Ротача - student2.ru

Рисунок 33 – Сравнительный анализ аппроксимированных моделей и модели, полученной в результате идентификации:

linsys1 – Аппроксимация модели методом В. Я. Ротача - student2.ru ; linsys2 – Аппроксимация модели методом В. Я. Ротача - student2.ru ; linsys3 – Аппроксимация модели методом В. Я. Ротача - student2.ru

Критерий приближения (по контрольным точкам) модели к рассматриваемому объекту выполняется как для диаграммы (linsys1), так и для диаграммы (linsys2). Поскольку порядок моделиlinsys2, полученной по переходной характеристике, ниже, чем в других моделях, что упростит дальнейшую настрой регулятора, то целесообразно в качестве расчетной использовать передаточную функцию вида:

Аппроксимация модели методом В. Я. Ротача - student2.ru .


Наши рекомендации