Вычислительные сети в распределённых системах и основные компоненты сети. Организация связи компьютера с периферийными устройствами.

Эволюция вычислительных систем. Требования к современным вычислительным сетям (характеристики, понятия).

Системы пакетной обработки, как правило, строились на базе мэйнфрейма - мощного и надежного компьютера универсального назначения. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день.

Многотерминальные системы - прообраз сети В таких системах компьютер отдавался в распоряжение сразу нескольким пользователям. Каждый пользователь получал в свое распоряжение терминал, с помощью которого он мог вести диалог с компьютером. Причем время реакции вычислительной системы было достаточно мало для того, чтобы пользователю была не слишком заметна параллельная работа с компьютером и других пользователей. Разделяя таким образом компьютер, пользователи получили возможность за сравнительно небольшую плату пользоваться преимуществами компьютеризации.

Терминалы, выйдя за пределы вычислительного центра, рассредоточились по всему предприятию. И хотя вычислительная мощность оставалась полностью централизованной, некоторые функции - такие как ввод и вывод данных - стали распределенными. Такие многотерминальные централизованные системы внешне уже были очень похожи на локальные вычислительные сети.

Появление глобальных сетей Тем не менее потребность в соединении компьютеров, находящихся на большом расстоянии друг от друга, к этому времени вполне назрела. Началось все с решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер. Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым механизмом любой вычислительной сети. Используя этот механизм, в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными сетевые службы.

Первые локальные сети В начале 70-х годов произошел технологический прорыв в области производства компьютерных компонентов - появились большие интегральные схемы. Их сравнительно невысокая стоимость и высокие функциональные возможности привели к созданию мини-компьютеров, которые стали реальными конкурентами мэйнфреймов.

хотелось получить возможность обмена данными с другими близко расположенными компьютерами. В ответ на эту потребность предприятия и организации стали соединять свои мини-компьютеры вместе и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые локальные вычислительные сети (рис. 1.4). Они еще во многом отличались от современных локальных сетей, в первую очередь - своими устройствами сопряжения.

Создание стандартных технологий локальных сетей Утвердились стандартные технологии объединения компьютеров в сеть - Ethernet, Arcnet, Token Ring. Мощным стимулом для их развития послужили персональные компьютеры. Эти массовые продукты явились идеальными элементами для построения сетей - с одной стороны, они были достаточно мощными для работы сетевого программного обеспечения, а с другой - явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

Современные тенденции В глобальных сетях появляются службы доступа к ресурсам, такие же удобные и прозрачные, как и службы локальных сетей. Подобные примеры в большом количестве демонстрирует самая популярная глобальная сеть - Internet.

Лок.Сети.Вместо соединяющего компьютеры пассивного кабеля в них в большом количестве появилось разнообразное коммуникационное оборудование - коммутаторы, маршрутизаторы, шлюзы. Благодаря такому оборудованию появилась возможность построения больших корпоративных сетей, насчитывающих тысячи компьютеров и имеющих сложную структуру.

В сетях стали отображаться - голос, видеоизображения, рисунки. Сложность передачи такой мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных - задержки обычно приводят к искажению такой информации в конечных узлах сети.

Требования к современным вычислительным сетям

Производительность, надежность и безопасность, Расширяемость и масштабируемость, Прозрачность, Поддержка разных видов трафика, Управляемость, Совместимость.

Вычислительные сети

В вычислительных сетях программные и аппаратные связи являются еще более слабыми, а автономность обрабатывающих блоков проявляется в наибольшей степени - основными элементами сети являются стандартные компьютеры, не имеющие ни общих блоков памяти, ни общих периферийных устройств. Связь между компьютерами осуществляется с помощью специальных периферийных устройств - сетевых адаптеров, соединенных относительно протяженными каналами связи. Каждый компьютер работает под управлением собственной операционной системы, а какая-либо «общая» операционная система, распределяющая работу между компьютерами сети, отсутствует. Взаимодействие между компьютерами сети происходит за счет передачи сообщений через сетевые адаптеры и каналы связи. С помощью этих сообщений один компьютер обычно запрашивает доступ к локальным ресурсам другого компьютера. Такими ресурсами могут быть как данные, хранящиеся на диске, так и разнообразные периферийные устройства - принтеры, модемы, факс-аппараты и т. д. Разделение локальных ресурсов каждого компьютера между всеми пользователями сети - основная цель создания вычислительной сети.

Каким же образом сказывается на пользователе тот факт, что его компьютер подключен к сети? Прежде всего, он может пользоваться не только файлами, дисками, принтерами и другими ресурсами своего компьютера, но аналогичными ресурсами других компьютеров, подключенных к той же сети. Правда, для этого недостаточно снабдить компьютеры сетевыми адаптерами и соединить их кабельной системой. Необходимы еще некоторые добавления к операционным системам этих компьютеров. На тех компьютерах, ресурсы которых должны быть доступны всем пользователям сети, необходимо добавить модули, которые постоянно будут находиться в режиме ожидания запросов, поступающих по сети от других компьютеров. Обычно такие модули называются программными серверами (server), так как их главная задача - обслуживать (serve) запросы на доступ к ресурсам своего компьютера. На компьютерах, пользователи которых хотят получать доступ к ресурсам других компьютеров, также нужно добавить к операционной системе некоторые специальные программные модули, которые должны вырабатывать запросы на доступ к удаленным ресурсам и передавать их по сети на нужный компьютер. Такие модули обычно называют программными клиентами (client). Собственно же сетевые адаптеры и каналы связи решают в сети достаточно простую задачу - они передают сообщения с запросами и ответами от одного компьютера к другому, а основную работу по организации совместного использования ресурсов выполняют клиентские и серверные части операционных систем.

Термины «клиент» и «сервер» используются не только для обозначения программных модулей, но и компьютеров, подключенных к сети. Если компьютер предоставляет свои ресурсы другим компьютерам сети, то он называется сервером, а если он их потребляет - клиентом. Иногда один и тот же компьютер может одновременно играть роли и сервера, и клиента.

Даже в результате достаточно поверхностного рассмотрения работы в сети становится ясно, что вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:

  • компьютеров;
  • коммуникационного оборудования;
  • операционных систем;
  • сетевых приложений.

Аппаратура линий связи

Аппаратура передачи данных (АПД или DCE) непосредственно связывает компьютеры или локальные сети пользователя с линией. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду.

Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (ООД или DTE — Data Terminal Equipment). Примером DTE могут служить компьютеры или маршрутизаторы локальных сетей. Эту аппаратуру не включают в состав линии связи.

Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Промежуточная аппаратура решает две основные задачи: О улучшение качества сигнала; О создание постоянного составного канала связи между двумя абонентами сети.

К основным характеристикам линий связи относятся:

полоса пропускания;затухание;помехоустойчивость;перекрестные наводки на ближнем конце линии;пропускная способность;достоверность передачи данных;удельная стоимость.

Требования к методам цифрового кодирования

При использовании прямоугольных импульсов для передачи дискретной информации необходимо выбрать такой способ кодирования, который одновременно достигал бы нескольких целей:

  • имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала;
  • обеспечивал синхронизацию между передатчиком и приемником;
  • обладал способностью распознавать ошибки;
  • обладал низкой стоимостью реализации.

Биполярный импульсный код

Кроме потенциальных кодов в сетях используются и импульсные коды, когда данные представлены полным импульсом или же его частью — фронтом. Наиболее простым случаем такого подхода является биполярный импульсный код, в котором единица представлена импульсом одной полярности, а ноль — другой. Каждый импульс длится половину такта. Такой код обладает отличными самосинхронизирующими свойствами, но постоянная составляющая может присутствовать, например, при передаче длинной последовательности единиц или нулей. Кроме того, спектр у него шире, чем у потенциальных кодов. Из-за слишком широкого спектра биполярный импульсный код используется редко.

Манчестерский код

В локальных сетях до недавнего времени самым распространенным методом кодирования был так называемый манчестерский код. Он применяется в технологиях Ethernet и Token Ring. В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому, а ноль — обратным перепадом. В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает хорошими самосинхронизирующими свойствами. Манчестерский код имеет еще одно преимущество перед биполярным импульсным кодом. В последнем для передачи данных используются три уровня сигнала, а в манчестерском — два.

Потенциальный код 2В1Q

Код 2В1Q название которого отражает его суть — каждые два бита (2В) передаются за один такт сигналом, имеющим четыре состояния (1Q). При этом способе кодирования требуются дополнительные меры по борьбе с длинными последовательностями одинаковых пар бит, так как при этом сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кода NRZ, так как при той же битовой скорости длительность такта увеличивается в два раза. Таким образом, с помощью кода 2B1Q можно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кода AMI или NRZI. Однако для его реализации мощность передатчика должна быть выше, чтобы четыре уровня четко различались приемником на фоне помех.

18. Логическое кодирование: избыточные коды, скремблирование, основные понятия, применение.

Логическое кодирование используется для улучшения потенциальных кодов типа AMI, NRZI или 2Q1B. Логическое кодирование должно заменять длинные последовательности бит, приводящие к постоянному потенциалу, вкраплениями единиц. Для логического кодирования характерны два метода — избыточные коды и скрэмблирование.

Избыточные кодыоснованы на разбиении исходной последовательности бит на порции, которые часто называют символами. Затем каждый исходный символ заменяется на новый, который имеет большее количество бит, чем исходный. Например, логический код 4В/5В, используемый в технологиях FDDI и Fast Ethernet, заменяет исходные символы длиной в 4 бита на символы длиной в 5 бит. Так как результирующие символы содержат избыточные биты, то общее количество битовых комбинаций в них больше, чем в исходных. Так, в коде 4В/5В результирующие символы могут содержать 32 битовых комбинации, в то время как исходные символы — только 16. Поэтому в результирующем коде можно отобрать 16 таких комбинаций, которые не содержат большого количества нулей, а остальные считать запрещенными кодами (code violation). Кроме устранения постоянной составляющей и придания коду свойства самосинхронизации, избыточные коды позволяют приемнику распознавать искаженные биты. Если приемник принимает запрещенный код, значит, на линии произошло искажение сигнала.

Код 4В/5В затем передается по линии с помощью физического кодирования по одному из методов потенциального кодирования, чувствительному только к длинным последовательностям нулей. Символы кода 4В/5В длиной 5 бит гарантируют, что при любом их сочетании на линии не могут встретиться более трех нулей подряд.

Буква В в названии кода означает, что элементарный сигнал имеет 2 состояния — от английского binary — двоичный. Имеются также коды и с тремя состояниями сигнала, например, в коде 8В/6Т для кодирования 8 бит исходной информации используется код из 6 сигналов, каждый из которых имеет три состояния. Избыточность кода 8В/6Т выше, чем кода 4В/5В, так как на 256 исходных кодов приходится 36-729 результирующих символов.

Использование таблицы перекодировки является очень простой операцией, поэтому этот подход не усложняет сетевые адаптеры и интерфейсные блоки коммутаторов и маршрутизаторов.

Скрэмблирование

Методы скрэмблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит результирующего кода. Например, скрэмблер может реализовывать следующее соотношение:

Существуют и более простые методы борьбы с последовательностями единиц, также относимые к классу скрэмблирования. Для улучшения кода Bipolar AMI используются два метода, основанные на искусственном искажении последовательности нулей запрещенными символами: B8ZS (Bipolar with 8-Zeros Substitution) и метода HDB3 (High-Density Bipolar 3-Zeros) для корректировки кода AMI

Компрессия данных

применяется для сокращения времени передачи данных.

может использоваться ряд алгоритмов компрессии, каждый из которых применим к определенному типу данных. Некоторые модемы предлагают адаптивную компрессию, при которой в зависимости от передаваемых данных выбирается определенный алгоритм компрессии.

Десятичная упаковка. Когда данные состоят только из чисел. Просмотр таблицы ASCII показывает, что старшие три бита всех кодов десятичных цифр содержат комбинацию 011. Если все данные в кадре информации состоят из десятичных цифр, то, поместив в заголовок кадра соответствующий управляющий символ, можно существенно сократить длину кадра.

Относительное кодирование.для чисел. передача только этих отклонений вместе с известным опорным значением.

Символьное подавление. Часто передаваемые данные содержат большое количество повторяющихся байт. Например, при передаче черно-белого изображения черные поверхности будут порождать большое количество нулевых значений, а максимально освещенные участки изображения - большое количество байт, состоящих из всех единиц. Передатчик сканирует последовательность передаваемых байт и, если обнаруживает последовательность из трех или более одинаковых байт, заменяет ее специальной трехбайтовой последовательностью, в которой указывает значение байта, количество его повторений, а также отмечает начало этой последовательности специальным управляющим символом.

Коды переменной длины. В этом методе кодирования используется тот факт, что не все символы в передаваемом кадре встречаются с одинаковой частотой. Поэтому во многих схемах кодирования коды часто встречающихся символов заменяют кодами меньшей длины, а редко встречающихся - кодами большей длины. Такое кодирование называется также статистическим кодированием. Из-за того, что символы имеют различную длину, для передачи кадра возможна только бит-ориентированная передача.

При статистическом кодировании коды выбираются таким образом, чтобы при анализе последовательности бит можно было бы однозначно определить соответствие определенной порции бит тому или иному символу или же запрещенной комбинации бит. Если данная последовательность бит представляет собой запрещенную комбинацию, то необходимо к ней добавить еще один бит и повторить анализ.

Одним из наиболее распространенных алгоритмов, на основе которых строятся неравномерные коды, является алгоритм Хафмана, позволяющий строить коды автоматически, на основании известных частот символов. Существуют адаптивные модификации метода Хафмана, которые позволяют строить дерево кодов «на ходу», по мере поступления данных от источника.

Метод доступа CSMA/CD.

В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).

Этот метод применяется исключительно в сетях с логической общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину 3). Простота схемы подключения — это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (Multiply Access, MA).

Этапы доступа к среде

Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.

Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense, CS). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

Если среда свободна, то узел имеет право начать передачу кадра. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ.

После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 икс. Эта пауза, называемая также межкадровым интервалом.

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации — методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.

Заметим, что этот факт отражен в составляющей «Base(band)», присутствующей в названиях всех физических протоколов технологии Ethernet (например, 10Base-2,10Base-T и т. п.). Baseband network означает сеть с немодулированной передачей, в которой сообщения пересылаются в цифровой форме по единственно-му каналу, без частотного разделения.

Коллизия — это нормальная ситуация в работе сетей Ethernet. В примере, изображенном на рис. 3.4, коллизию породила одновременная передача данных узлами 5 и 1. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.

31. Форматы кадров Ethernet: применение LLC, кадры RAW 802.3 Novell 802.3
Стандарт технологии Ethernet, описанный в документе IEEE 802.3, дает описание единственного формата кадра уровня MAC. Так как в кадр уровня MAC должен вкладываться кадр уровня LLC, описанный в документе IEEE 802.2, то по стандартам IEEE в сети Ethernet может использоваться только единственный вариант кадра канального уровня, заголовок которого является комбинацией заголовков MAC и LLC подуровней.

Тем не менее, на практике в сетях Ethernet на канальном уровне используются кадры 4-х различных форматов (типов). Это связано с длительной историей развития технологии Ethernet, насчитывающей период существования до принятия стандартов IEEE 802, когда подуровень LLC не выделялся из общего протокола и, соответственно, заголовок LLC не применялся.

Консорциум трех фирм Digital, Intel и Xerox в 1980 году представил на рассмотрение комитету 802.3 свою фирменную версию стандарта Ethernet (в которой был, естественно, описан определенный формат кадра) в качестве проекта международного стандарта, но комитет 802.3 принял стандарт, отличающийся в некоторых деталях от предложения DIX. Отличия касались и формата кадра, что породило существование двух различных типов кадров в сетях Ethernet.

Еще один формат кадра появился в результате усилий компании Novell по ускорению работы своего стека протоколов в сетях Ethernet.

И наконец, четвертый формат кадра стал результатом деятельности комитета 802:2 по приведению предыдущих форматов кадров к некоторому общему стандарту.

Различия в форматах кадров могут приводить к несовместимости в работе аппаратуры и сетевого программного обеспечения, рассчитанного на работу только с одним стандартом кадра Ethernet. Однако сегодня практически все сетевые адаптеры, драйверы сетевых адаптеров, мосты/коммутаторы и маршрутизаторы умеют работать со всеми используемыми на практике форматами кадров технологии Ethernet, причем распознавание типа кадра выполняется автоматически.

  • кадр 802.3/LLC (кадр 802.3/802.2 или кадр Novell 802.2);
  • кадр Raw 802.3 (или кадр Novell 802.3);
  • кадр Ethernet DIX (или кадр Ethernet II);
  • кадр Ethernet SNAP.

Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах IEEE 802.3 и 802.2.

Стандарт 802.3 определяет восемь полей заголовка (рис. 3.6; поле преамбулы и начальный ограничитель кадра на рисунке не показаны).

  • Поле преамбулы (Preamble)
  • Начальный ограничитель кадра (Start-of-frame-delimiter, SFD)
  • Адрес назначения (Destination Address, DA) может быть длиной 2 или б байт.
  • Адрес источника (Source Address, SA)
  • Длина (Length, L) — 2-байтовое поле, которое определяет длину поля данных в кадре.
  • Поле данных (Data) может содержать от 0 до 1500 байт.
  • Поле заполнения (Padding) состоит из такого количества байт заполнителей, которое обеспечивает минимальную длину поля данных в 46 байт. Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется.
  • Поле контрольной суммы (Frame Check Sequence, PCS) состоит из 4 байт, содержащих контрольную сумму. Это значение вычисляется по алгоритму CRC-32. После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр.

Кадр Raw 802.3/Novell 802.3

Кадр Raw 8023, называемый также кадром Novell 8023, представлен на рис. 3.6. Из рисунка видно, что это кадр подуровня MAC стандарта 802.3, но без вложенного кадра подуровня LLC. Компания Novell долгое время не использовала служебные поля кадра LLC в своей операционной системе NetWare из-за отсутствия необходимости идентифицировать тип информации, вложенной в поле данных, — там всегда находился пакет протокола IPX, долгое время бывшего единственным протоколом сетевого уровня в ОС NetWare.

Теперь, когда необходимость идентификации протокола верхнего уровня появилась, компания Novell стала использовать возможность инкапсуляции в кадр подуровня MAC кадра LLC, то есть использовать стандартные кадры 802.3/LLC. Такой кадр компания обозначает теперь в своих операционных системах как кадр 802.2, хотя он является комбинацией заголовков 802.3 и 802.2.

Расчет PDV

С каждым сегментом связана постоянная задержка, названная базой, которая зависит только от типа сегмента и от положения сегмента на пути сигнала (левый, промежуточный или правый). База правого сегмента, в котором возникает коллизия, намного превышает базу левого и промежуточных сегментов.

Кроме этого, с каждым сегментом связана задержка распространения сигнала вдоль кабеля сегмента, которая зависит от длины сегмента и вычисляется путем умножения времени распространения сигнала по одному метру кабеля (в битовых интервалах) на длину кабеля в метрах.

Расчет заключается в вычислении задержек, вносимых каждым отрезком кабеля (приведенная в таблице задержка сигнала на 1 м кабеля умножается на длину сегмента), а затем суммировании этих задержек с базами левого, промежуточных и правого сегментов. Общее значение PDV не должно превышать 575.

Так как левый и правый сегменты имеют различные величины базовой задержки, то в случае различных типов сегментов на удаленных краях сети необходимо выполнить расчеты дважды: один раз принять в качестве левого сегмента сегмент одного типа, а во второй - сегмент другого типа. Результатом можно считать максимальное значение PDV.

Расчет PW

Чтобы признать конфигурацию сети корректной, нужно рассчитать также уменьшение межкадрового интервала повторителями, то есть величину PW.

Для расчета PVV также можно воспользоваться табличными значениями максимальных величин уменьшения межкадрового интервала при прохождении повторителей различных физических сред (таблица 4 взята из того же справочника, что и предыдущая).

Вычислительные сети в распределённых системах и основные компоненты сети. Организация связи компьютера с периферийными устройствами. - student2.ru

Физический уровень

Стандарт Fast Ethernet определяет три типа среды передачи сигналов Ethernet со скоростью 100 Мбит/с.

· 100Base-TX — две витые пары проводов. Передача осуществляется в соответствии со стандартом передачи данных в витой физической среде, разработанным ANSI (American National Standards Institute — Американский национальный институт стандартов). Витой кабель для передачи данных может быть экранированным, либо неэкранированным. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования MLT-3.

· 100Base-FX — две жилы, волоконно-оптического кабеля. Передача также осуществляется в соответствии со стандартом передачи данных в волоконно-оптической среде, которой разработан ANSI. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования NRZI.

· 100Base-T4 — это особая спецификация, разработанная комитетом IEEE 802.3u . Согласно этой спецификации, передача данных осуществляется по четырем витым парам телефонного кабеля, который называют кабелем UTP категории 3. Использует алгоритм кодирования данных 8В/6Т и метод физического кодирования NRZI.

Многомодовый кабель

В волоконно-оптическом кабеле этого типа используется волокно с сердцевиной диаметром 50, либо 62,5 микрометра и внешней оболочкой толщиной 125 микрометров. Такой кабель называется многомодовым оптическим кабелем с волокнами 50/125 (62,5/125) микрометров. Для передачи светового сигнала по многомодовому кабелю применяется светодиодный приемопередатчик с длиной волны 850 (820) нанометров. Если многомодовый кабель соединяет два порта переключателей, работающих в полнодуплексном режиме, то он может иметь длину до 2000 метров.

Одномодовый кабель

Одномодовый волоконно-оптический кабель имеет меньший, чем у многомодового, диаметр сердцевины - 10 микрометра, и для передачи по одномодовому кабелю используется лазерный приемопередатчик, что в совокупности обеспечивает эффективную передачу на большие дистанции. Длина волны передаваемого светового сигнала близка к диаметру сердцевины, который равен 1300 нанометрам. Это число известно как длина волны нулевой дисперсии. В одномодовом кабеле дисперсия и потери сигнала очень незначительны, что позволяет передавать световые сигналы на большие расстояния, нежели в случае применения многомодового волокна.

38. Технология Gigabit Ethernet, общая характеристика, спецификация физической среды, основные понятия.
3.7.1. Общая характеристика стандарта

Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, работающие также на скорости 100 Мбит/с — магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей. В 1995 году более высокий уровень скорости могли предоставить только коммутаторы ATM, а при отсутствии в то время удобных средств миграции этой технологии в локальные сети (хотя спецификация LAN Emulation — LANE была принята в начале 1995 года, практическая ее реализация была впереди) внедрять их в локальную сеть почти никто не решался. Кроме того, технология ATM отличалась очень высоким уровнем стоимости.

Поэтому логичным выглядел следующий шаг, сделанный IEEE, — через 5 месяцев после окончательного принятия стандарта Fast Ethernet в июне 1995 года исследовательской группе по изучению высокоскоростных технологий IEEE было предписано заняться рассмотрением возможности выработки стандарта Ethernet с еще более высокой битовой скоростью.

Летом 1996 года было объявлено о создании группы 802.3z для разработки протокола, максимально подобного Ethernet, но с битовой скоростью 1000 Мбит/с. Как и в случае Fast Ethernet, сообщение было воспринято сторонниками Ethernet с большим энтузиазмом.

Основной причиной энтузиазма была перспектива такого же плавного перевода магистралей сетей на Gigabit Ethernet, подобно тому, как были переведены на Fast Ethernet перегруженные сегменты Ethernet, расположенные на нижних уровнях иерархии сети. К тому же опыт передачи данных на гигабитных скоростях уже имелся, как в территориальных сетях (технология SDH), так и в локальных — технология Fibre Channel, которая используется в основном для подключения высокоскоростной периферии к большим компьютерам и передает данные по волоконно-оптическому кабелю со скоростью, близкой к гигабитной, посредством избыточного кода 8В/10В.

Первая версия стандарта была рассмотрена в январе 1997 года, а окончательно стандарт 802.3z был принят 29 июня 1998 года на заседании комитета IEEE 802.3. Работы по реализации Gigabit Ethernet на витой паре категории 5 были переданы специальному комитету 802.3аb, который уже рассмотрел несколько вариантов проекта этого стандарта, причем с июля 1998 года проект приобрел достаточно стабильный характер. Окончательное принятие стандарта 802.3ab ожидается в сентябре 1999 года.

Не дожидаясь принятия стандарта, некоторые компании выпустили первое оборудование Gigabit Ethernet на оптоволоконном кабеле уже к лету 1997 года.

Основная идея разработчиков стандарта Gigabit Ethernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с.

Так как при разработке новой технологии естественно ожидать некоторых технических новинок, идущих в общем русле развития сетевых технологий, то важно отметить, что Gigabit Ethernet, так же как и его менее скоростные собратья, на уровне протокола не будет поддерживать:

  • качество обслуживания;
  • избыточные связи;
  • тестирование работоспособности узлов и оборудования (в последнем случае — за исключением тестирования связи порт — порт, как это делается для Ethernet 10Base-T и 10Base-F и Fast Ethernet).

Все три названных свойства считаются весьма перспективными и полезными в современных сетях, а особенно в сетях ближайшего будущего. Почему же авторы Gigabit Ethernet отказываются от них?

Главная идея разработчиков технологии Gigabit Ethernet состоит в том, что существует и будет существовать весьма много сетей, в которых высокая скорость магистрали и возможность назначения пакетам приоритетов в коммутаторах будут вполне достаточны для обеспечения качества транспортного обслуживания всех клиентов сети. И только в тех редких случаях, когда и магистраль достаточно загружена, и требования к качеству обслуживания очень жесткие, нужно применять технологию ATM, которая действительно за счет высокой технической сложности дает гарантии качества обслуживания для всех основных видов трафика.

39. Структурная кабельная система применяемая в сетевых технологиях.
Структурированная кабельная система (Structured Cabling System, SCS) — это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.

Структурированная кабельная система представляет своего рода «конструктор», с помощью которого проектировщик сети строит нужную ему конфигурацию из стандартных кабелей, соединенных стандартными разъемами и коммутируемых на стандартных кроссовых панелях. При необходимости конфигурацию связей можно легко изменить — добавить компьютер, сегмент, коммутатор, изъять ненужное оборудование, а также поменять соединения между компьютерами и концентраторами.

При построении структурированной кабельной системы подразумевается, что каждое рабочее место на предприятии должно быть оснащено розетками для подключения телефона и компьютера, даже если в данный момент этого не требуется. То есть хорошая структурированная кабельная система строится избыточной. В бу

Наши рекомендации