Система с параллельным соединением элементов

На рис. 1.17 представлено параллельное соединение элементов 1, 2, 3. Это означает, что устройство, состоящее из этих элементов, переходит в состояние отказа после отказа всех элементов при условии, что все элементы системы находятся под нагрузкой, а отказы элементов.…..

       
  Система с параллельным соединением элементов - student2.ru
   
Рис. 1.17. Блок-схема системы с параллельным соединением элементов.
 

Условие работоспособности устройства можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1, или элемент 2, или элемент 3 или элементы 1 и 2, 1 и 3, 2 и 3, 1 и 2 и 3.

Вероятность безотказного состояния устройства, состоящего из n параллельно соединенных элементов, определяется по теореме сложения вероятностей совместных случайных событий, как

Р = (р12+…+рn)–(р1р2 1 р3 +…)–(р1р2р3 1р2рn+…)-…± (р1р2р3…рn)(1.25)

Для приведенной блок – схемы (рис. 1.17), состоящей из трех элементов, выражение (1.25) можно записать:

Р = р1 + р2 + р3 – (р1р2 + р1р3 + р2р3) + р1р2р3

Применительно к проблемам надежности, по правилу умножения вероятностей независимых (в совокупности) событий, надежность устройства из n элементов вычисляется по формуле:

 
 
Система с параллельным соединением элементов - student2.ru

(1.26)

т.е. при параллельном соединении независимых (в смысле надежности) элементов их ненадежности (1-рi = gi) перемножаются.

В частном случае, когда надежности всех элементов одинаковы, формула (1.26) принимает вид:

Р = 1 – (1 – р)n (1.27)

Пример 1.3.5. Предохранительное устройство, обеспечивающее безопасность работы системы под давлением, состоит из трех дублирующих друг друга клапанов. Надежность каждого из них р = 0,9. Клапаны независимы в смысле надежности. Найти надежность устройства.

Решение. По формуле (1.27) Р = 1 - (1 – 0,9)3 = 0,999

Интенсивность отказов устройства состоящего из n параллельно соединенных элементов, обладающих постоянной интенсивностью отказов λ0, определяется как:

DQ(t)dt d(1 – exp(-λ0t))n / dt n λ0 (1– exp(-λ0t))n-1

λ = -------------- = --------------------------- = -------------------------- (1.28)

P(t) 1 - (1 – exp(-λ0t))n 1 - (1 – exp(-λ0t))n

Из (1.28) видно, что интенсивность отказов устройства при n>1 зависит от t: при t=0 она равна нулю, при увеличении t, монотонно возрастает до λ0.

Если интенсивности отказов элемента постоянны и подчинены показательному закону распределения, то выражение (1.26) можно записать:

 
 
Система с параллельным соединением элементов - student2.ru

(1.29)

Среднее время безотказной работы системы То находим, интегрируя уравнение (1.29) в интервале [0, ∞]:

 
 
Система с параллельным соединением элементов - student2.ru

= (1/ λ1 + 1/ λ2 +…+ 1/ λn) – (1/( λ1 + λ2) +

+ 1/ (λ1 + λ3) +…) + (1/ + λ1 + λ2 + λ3) + 1/( λ1 + λ2 + λ4) + …) + (-1) n+1 * 1

Система с параллельным соединением элементов - student2.ru

/ (1.30)

В случае, когда интенсивности отказов всех элементов одинаковы, выражение (1.30) принимает вид:

 
 
Система с параллельным соединением элементов - student2.ru

(1.31)

Среднее время работы до отказов также можно получить, интегрируя уравнение (1.25) в интервале [0, ∞].

Пример 1.3.6. Предположим, что два одинаковых вентилятора в системе очистки отходящих газов работают параллельно, причем если один из них выходит из строя, то другой способен работать при полной системной нагрузке без изменения своих надежностных характеристик.

Требуется найти безотказность системы в течение 400 ч (продолжительность выполнения задания) при условии, что интенсивности отказов двигателей вентиляторов постоянны и равны λ=0,0005 ч –1, отказы двигателей статистически независимы и оба вентилятора начинают работать в момент времени t=0.

Решение. В случае идентичных элементов формула (1.29) принимает вид:

P(t) = 2exp(-λt) – exp(-2 λt)

Поскольку λ=0,0005 ч –1 и t = 400, то:

То = 1/ λ(1/1 +1/2) = 1/ λ * 3/2 = 1,5/0,0005 = 3000 ч

1.3.5.3 Способы преобразования сложных структур

Относительная простота расчетов надежности, основанных на использова-

нии параллельно-последовательных структур, делают их самыми распространенными в инженерной практике. Однако не всегда условие работоспособности можно непосредственно представить параллельно-последовательной структурой. В этом случае можно сложную структуру заменить ее эквивалентной параллельно-последовательной структурой. К таким преобразованиям относятся:

- преобразование с эквивалентной заменой треугольника на звезду и обратно;

- разложение сложной структуры по базовому элементу.

Существо способа преобразования с помощью эквивалентной замены

треугольника на звезду и обратно заключается в том, что узел сложной конфигурации заменяется на узел другой, более простой конфигурации, но при этом подбираются такие характеристики нового узла, что надежности преобразуемой цепи сохранялись прежними.

Система с параллельным соединением элементов - student2.ru а) б) * 3

b
1 q 13 3 q3

Система с параллельным соединением элементов - student2.ru

a
а
Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru * *

c
b
Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru 1* *

c
Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru * q1 q2

Система с параллельным соединением элементов - student2.ru q12 2 q 23

* 2

Рис. 1.18 Преобразование «треугольник – звезда».

Пусть, например, требуется заменить треугольник (рис. 1.18, а) звездой (рис. 1.18, б) при условии, что вероятность отказов элемента а равна q13, элемента b равна q12, элемента c – q23. Переход к соединению звездой не должен изменить надежность цепей 1 – 2, 1 – 3, 2 – 3. Поэтому значение вероятностей отказов элементов звезды q1, q2, q3 должны удовлетворять следующим равенствам:

Система с параллельным соединением элементов - student2.ru q1 + q2 – q1q2 = q12 (q23 + q31 – q23q31);

q2 + q3 – q2q3 = q23 (q31 + q12 – q31q12);(1.32)

q3 + q1 – q3q1 = q31 (q12 + q23 – q12q23)

Если пренебречь произведениями вида qiqj; qiqjqk. То в результате решения системы уравнения (1.32) можно записать:

q1= q12q31; q2 = q23q12; q3= q31q23 (1.33)

Для обратного преобразования звезды в треугольник:

 
 
Система с параллельным соединением элементов - student2.ru

(1.34)

Пример 1.3.7. Определить вероятность безотказной работы устройства, структурная схема которого изображена на рис. (1.13, в), если известно, что вероятности безотказной работы каждого из элементов схемы равны 0,9, а вероятности отказов равны 0,1.

Решение.

1. Преобразуем соединение элементов 1, 2, 5 в треугольник (рис. 1.19, а), в звезду (рис. 1.19, б).

2. Определим эквивалентные значения вероятности отказов для новых элементов a, b, c:

а) б)

Система с параллельным соединением элементов - student2.ru

 
 
b

В С

Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru

а
Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru * *

Система с параллельным соединением элементов - student2.ru

Система с параллельным соединением элементов - student2.ru А* *

c
Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru *

А

 
  Система с параллельным соединением элементов - student2.ru

Рис. 1.19. К примеру преобразования структуры.

qa = q1q2 = 0,1 * 0,1 = 0,01

qb = q1q5 = 0,1 * 0,1 = 0,01

qc = q2q5 = 0,1 * 0,1 = 0,01

3. Определим значения вероятности безотказного состояния элементов эквивалентной схемы (рис. 1.19, б):

pa = pb = pc = 0,99

4. Определим вероятность безотказной работы эквивалентного устройства (рис. 1.20):

 
  Система с параллельным соединением элементов - student2.ru

Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru

a
А D

 
  Система с параллельным соединением элементов - student2.ru

Рис. 1.20. Преобразованная структура

P = pa (pbp3 + pcp4 – pbp3pcp4) = 0,99 (0,99 *0,9 + 0,99 * 0,9 – 0,99 * 0,9 * 0,99

* 0,9) = 0,978

Способ преобразования с помощью разложения сложной структуры по некоторому базовому элементу основан на использовании теоремы о сумме вероятностей несовместных событий. В сложной структуре выбирают базовый элемент (или группу базовых элементов) и делаются следующие допущения:

- базовый элемент находится в работоспособном состоянии;

- базовый элемент находится в отказавшем состоянии.

Для этих случаев, представляющих собой два несовместных события,

исходная структура преобразовывается в две новые схемы. В первой из них вместо базового элемента ставится «короткое замыкание» цепи, а во второй – разрыв. Вероятности безотказной работы каждой из полученных простых структур - вычисляются и умножаются: первая – на вероятность безотказного состояния базового элемента, вторая – на вероятность отказа базового элемента. Полученные произведения складываются. Сумма равна искомой вероятности безотказной работы сложной структуры.

Пример. 1.3.8. Решить предыдущий пример методом разложения сложной структуры.

Решение:

1. В качестве базового элемента примем элемент 5 (рис. 1.13, б).

2. Закоротим базовый элемент, т.е. сделаем допущения об абсолютной его проводимости. Присоединим к полученной структуре последовательно базовый элемент с характеристикой его надежности р5. В результате вместо исходной структуры получим новую структуру (рис. 1.21, а).

3. Произведем обрыв базового элемента, т.е. сделаем предположение об его абсолютной ненадежности (непроводимости). К полученной структуре присоединим последовательно базовый элемент с характеристикой его ненадежности (1 - р5). В результате получим структуру (рис. 1.21, б).

4. Искомая вероятность равна сумме вероятностей структур (рис. 1.21., а, б), каждая из которых параллельно-последовательная.

Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru

Система с параллельным соединением элементов - student2.ru
Система с параллельным соединением элементов - student2.ru а)

А + D

               
  Система с параллельным соединением элементов - student2.ru   Система с параллельным соединением элементов - student2.ru
    Система с параллельным соединением элементов - student2.ru
 
 
    Система с параллельным соединением элементов - student2.ru

б)

           
  Система с параллельным соединением элементов - student2.ru   Система с параллельным соединением элементов - student2.ru   Система с параллельным соединением элементов - student2.ru
 

Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru Система с параллельным соединением элементов - student2.ru

(1-р5)
A D

 
  Система с параллельным соединением элементов - student2.ru

Поэтому:

Р = р5 [(р1 + р2 – р1р2)(р3 + р4 – р3р4)] + (1-р5) [р1р3 + р2р4 – р1р3р2р4] =

= 0,9 [(0,9 + 0,9 – 0,9* 0,9) * (0,9 + 0,9 – 0,9 * 0,9)] + (1 – 0,9) * [0,9* 0,9 + 0,9 * 0,9 – 0,9 * 0,9 *0,9 * 0,9] ≈0,978

Вероятность безотказной работы мостиковой схемы, состоящей из пяти неодинаковых и независимых элементов, можно определить по формуле:

Р = 2 р1р2р3р4р5 – р2р3р4р5 – р1р3р4р5– р1р2р4р5 – р1р2р3р5 – р1р2р3р4 + р1р3р5 +

+ р2р3р4 + р1р4 + р2р5 (1.35)

В случае идентичности элементов эта формула принимает вид:

Р = 2р5 – 5р4 + 2р3 + 2р2 (1.36)

Подставляя соотношение (1.36 в формулу 1.23), получаем, что в случае использования элементов с постоянной интенсивностью отказов (экспоненциальном законе распределения отказов):

P(t) = 2exp(-5λt) – 5exp(-4λt) + 2exp(-3λt) + 2exp(-2λt) (1.37)

Среднее время безотказной работы системы То находим путем интегрирования уравнения (1.37) в интервале [0, ∞]:

 
 
Система с параллельным соединением элементов - student2.ru

То = (1.38)

Пример. 1.3.9. Определить вероятность безотказной работы устройства, структурная схема которого изображена на рис.(1.13, д), если известно, что вероятности безотказной работы каждого из элементов схемы равны 0,9.

Решение.

Так как все элементы идентичны, воспользуемся формулой (1.35), с ее помощью получаем:

Р = 2 * 0,95 – 5 * 0,94 + 2 * 0,93 + 2 * 0,92 ≈ 0,978

Пример. 1.4.0. Требуется определить вероятность безотказной работы и среднюю наработку на отказ системы, состоящей из пяти независимых и одинаковых элементов, соединенных по мостиковой схеме (рис. 1.13, д). Считается, что λ = 0,0005 ч-1, t = 100 ч и все элементы начинают работать в момент времени t = 0.

Решение.

1. С помощью формулы (1.37) получаем:

Р(100) = 2е-0,25 – 5е-0,2 + 2е-0,15 + 2е-0,1 = 0,9999

2. Подставляя полученное значение вероятности безотказной работы в формулу (1.38), находим среднюю наработку на отказ:

То = 49/(60 * 0,0005) = 1633,4 ч.

Наши рекомендации