К осени 1973 года работы были закончены, схема стенда стала намного логичнее и проще. Но, к сожалению, при этом, как выяснилось позднее, не избежали и некоторых просчетов.
Новые полномасштабные стыковочные агрегаты решили испытывать именно на этой динамической установке в Хьюстоне. Конец зимы, весна и все лето семьдесят третьего года ушли на изготовление и отработку стыковочного агрегата в СССР и подготовку к совместным испытаниям. Тем же были заняты американские специалисты в США. В мае первый АПАС увидел свет. Это уже была настоящая космическая система, отвечающая всем жестким требованиям, обеспечивающим ее высокую надежность при минимальном весе и габаритах.
На совместные испытания стыковочных агрегатов в Хьюстоне прибыли руководители НАСА. Понятно, что особый интерес вызывает советская конструкция. |
Он действительно получился красивым, наш АПАС, если исходить из того, что истинная красота конструкции в рациональности, в том изяществе, с которым она решает поставленные перед ней задачи. «Он элегантен, ваш стыковочный агрегат», – скажет позднее М. Фаже, один из руководителей американского космического Центра имени Джонсона. Я думаю, он имел в виду не только внешний вид АПАСа, комплимент относился и к его принципу действия.
Поскольку корабль «Аполлон» создавался для полета на Луну, американские конструкторы, приспосабливая его для решения задач в околоземном космосе, располагали солидными резервами веса. Может быть, по этой причине авторы американского стыковочного агрегата не слишком заботились об экономии веса. Их стыковочный агрегат получился почти в два раза тяжелее нашего.
АПАС успешно прошел всю предварительную отработку и проверку и к концу августа был готов к отправке в Техас.
Наша небольшая испытательная команда 14 сентября прибыла в Хьюстон. Нам предстояло впервые произвести настоящую стыковку агрегатов кораблей «Союз» и «Аполлон», при которой фактически проверялись и отрабатывались все этапы сложного и многостороннего процесса соединения кораблей, работа агрегатов в совместном полете и при расстыковке.
Сначала последовательно шаг за шагом были проверены все операции по стыковке и расстыковке, причем оба агрегата работали при этом как в активной, так и в пассивной роли. Затем испытана герметичность состыкованных агрегатов, в том числе при нагреве и охлаждении конструкций с имитацией полетных экстремальных температур. Еще раз убедились в том, что стык способен выдерживать одновременное воздействие внешних и внутренних нагрузок. На этом первая часть испытаний закончилась, и агрегаты установили на динамический стенд для проведения основной по объему и сложности части работ – стыковки с имитацией движения космических кораблей в условиях невесомости.
На этом стенде мы провели в общей сложности более 100 стыковок, или испытательных пробегов, как их называли американцы, при нормальных, высоких и пониженных температурах. Может возникнуть вопрос: зачем нужно так много стыковок? Дело в том, что корабли могут подойти друг к другу в самых разных положениях. Космонавты и астронавты управляют сближением кораблей, используя две трехстепенные ручки и наблюдая специальную мишень, как бы прицеливаясь по ней. Несмотря на продолжительные и интенсивные тренировки, как и при обычной стрельбе, всегда возникают ошибки. Только здесь их разброс увеличивается: управлять приходится пространственным положением, выдерживая как относительные координаты, так и скорости.
Одновременно работают автоматические системы ориентации кораблей, которые, с одной стороны, облегчают космонавту управление, а с другой – вносят свой «вклад» в виде определенных ошибок. Тот, кто управлял автомобилем, имеющим только три степени свободы, знает, как не просто бывает порой выехать через узкие ворота гаража, а управление кораблем в пространстве намного сложнее. Поэтому стыковочное устройство рассчитывается так, что даже при самых худших условиях, самых грубых ошибках относительного положения кораблей и разных скоростях происходила бы надежная стыковка. Это требование не только усложняет стыковочный агрегат, сам процесс стыковки, но и проведение испытаний.
Прежде всего, трудно определить, какие условия, какие сочетания скоростей и ошибок взаимного положения наиболее неблагоприятны. Что, например, страшнее – большие скорости сближения или малые? Оказывается, плохо и то и другое. При больших скоростях может не хватить энергоемкости амортизаторов и возникнут слишком большие силы от соударения кораблей. При малой скорости сближения кинетической энергии кораблей может оказаться недостаточно для срабатывания защелок. Если сцепка не произойдет, система начнет «разваливаться», и, чтобы избежать соударения, корабли придется быстро разводить.
Поэтому вначале отыскиваются наиболее неблагоприятные, или «подозрительные», сочетания начальных параметров сближения и проводится теоретический анализ процесса стыковки для всех этих вариантов. Проведение такого теоретического анализа – это целая большая глава в создании любого стыковочного устройства, а ввиду особой сложности АПАСа – тем более. Чтобы рассчитать, как будут стыковаться корабли, необходимо составить математическую модель процесса стыковки. Полная модель учитывает движение самих кораблей. Для каждого момента времени аналитически отыскивается точка или точки соприкосновения направляющих выступов стыковочных агрегатов друг с другом или с кольцами. Затем определяется, на какую величину и с какой скоростью деформируются амортизаторы при соударении (эти усилия одновременно используются в уравнениях движения кораблей). Компьютер вычисляет, как реагируют системы управления кораблей на действие возмущений при стыковке, и учитывает создаваемые ими усилия и моменты. Математическая модель позволяет рассчитать весь процесс стыковки для разных вариантов.