Лекция №1. Введение. Современное состояние освоения морских месторождений.
Образование водяных и газовых конусов.
В условиях статического равновесия, т.е. до начала процесса вытеснения, газ, нефть и вода в пластах распределены в соответствии с их плотностями. В случае наличия свободного газа он располагается в верхней части структуры, образуя так называемую газовую шапку, за которой следует нефтенасыщенная часть пласта или нефтяная зона, подстилаемая подошвенной водой.
В процессе добычи это равновесие нарушается из-за создания градиентов давления, принимающих особенно высокие значения в призабойной зоне добывающих скважин. Наличие высоких градиентов давления приводит к изменению формы условных границ разделов фаз (т.е. водо-нефтяного и газо-нефтяного контактов), заставляя их изгибаться в сторону перфорационных отверстий скважины, через которые осуществляется добыча. При превышении градиентами давления (или перепадом давления между скважиной и пластом) определенного уровня может наступить прорыв воды и/или газа в скважину, в результате которого дебит нефти может резко сократиться, а добыча газа и/или воды стать неоправданно большой. Рис. 3 может служить в качестве иллюстрации подобного процесса образования водяного конуса.
Из-за более высокой подвижности газа и воды по сравнению с нефтью конусообразование может привести к дальнейшему сокращению охвата пласта процессом вытеснения и ухудшению условий добычи нефти (высокий газовый фактор, высокая обводненность добываемой продукции, низкий дебит по нефти и т.п.).
Низкий коэффициент охвата пласта воздействием
Как уже было отмечено выше, сочетание неоднородности фильтрационно-емкостных свойств пласта с неблагоприятным соотношением подвижностей и плотностей фильтрующихся в нем фаз приводит к низкому охвату пласта воздействием и не позволяет, как правило, добиться высоких показателей разработки.
Рис.3.- Процесс образования водяного конуса: а— стационарное распределение фаз, предшествующее добыче; б— первая стадия образования конуса: искривление поверхности ВНК; в— прорыв конуса к перфорационным отверстиям, начало одновременной добычи нефти и воды. |
Осн.: 1. [7-11], 4. [161-164]
Доп.: 7. [15-17]
Контрольные вопросы:
1. Понятие о континентальном шельфе?
2. От чего зависят общие капитальные вложения?
3. Что вы понимаете под словом «кромка»?
4.В чем отличается разработка шельфовых месторождений от разработки месторождений на суше?
5.Что такое целики нефти ?
6. Как образуются водяные и газовые конусы?
7. Каким должен быть коэффициент охвата пласта воздействием ?
Лекция №3. Поисково-разведочные работы на шельфе (геофизика).
Требования к бурению разведочных скважин на море
Наибольшее распространение на море получили бурильные трубы нефтяного сортамента диаметром 0,127 м. Соответственно диаметр скважины не может быть меньше 0,132 м.
Установленные геологические разрезы и глубины разведываемых акваторий, геолого-методические и эксплуатационно-технические требования к бурению скважин рассмотренных целевых назначений определяют следующие их параметры:
Максимальная глубина скважины, м:
по воде/по породам .............................................. 300/300
Диаметр скважины в рыхлых отложениях, м:
максимальный ................................................... 0,325/0,351
минимальный ................................................... 0,146/0,166
Диаметр скважины в коренных породах, м: ;
максимальный ................................................. 0,131
минимальный ................................................... 0,059
Основная зона шельфа, разведываемая геологами, составляет полосу шириной от сотен метров до 25 км. Удаленность точек заложения скважин от берега при бурении с ледового припая зависит от ширины припайной полосы и для арктических морей достигает 5 км.
^ Горно-геологические условия характеризуются в основном мощностью и физико-механическими свойствами горных пород, пересекаемых скважиной. Отложения шельфа обычно представлены рыхлыми породами с включением валунов. Основными составляющими донных отложений являются илы, пески, глины и галька. В различных соотношениях могут образовываться отложения песчано-галечные, суглинки, супеси, песчано-илистые и т.д. Для шельфа дальневосточных морей породы донных отложений представлены следующими видами, %: илы — 8, пески — 40, глины — 18, галька — 16, прочие — 18. Валуны встречаются в пределах 4 —6 % в разрезе пробуренных скважин и 10—12 % скважин от общего их количества.
Рациональные способы бурения разведочных скважин на море
Рациональным является такой способ бурения скважины, который обеспечивает достаточно качественное выполнение поставленной задачи при минимальных трудовых и материальных затратах. Выбор такого способа бурения базируется на сравнительной оценке его эффективности, определяемой многими факторами, каждый из которых в зависимости от геолого-методических требований, назначения и условий бурения может иметь решающее значение. При выборе рационального способа бурения оценивать следует, прежде всего, и главным образом по фактору, отражающему целевое назначение скважины. При выявлении двух и более способов бурения, обеспечивающих пусть даже различное, но достаточное качество выполнения поставленной задачи, следует продолжить их оценку по другим факторам. Если сравниваемые способы не обеспечивают качественного решения геологической или технической задачи, ради которой осуществляется бурение, то оценивать их, например, по производительности и экономической эффективности не имеет практического смысла.
Факторы, влияющие на процесс и эффективность бурения на море, специфические (см. рис.16). Они ограничивают или вовсе исключают возможность применения некоторых способов и технических средств, признанных эффективными для бурения скважин того же назначения на суше. Исходя из этого эффективность способов бурения разведочных скважин на море предложено оценивать по четырем показателям:
геологической информативности;
эксплуатационно-технологическим возможностям;
технической эффективности;
экономической эффективности.
Геологическая информативность определяется конкретными задачами бурения разведочных скважин. При разведке месторождений полезных ископаемых геологическую информативность способов бурения оценивают по качеству отбираемого керна. Керн должен обеспечивать получение геологического разреза и фактических параметров месторождения: литологического и гранулометрического состава разбуриваемых отложений, их обводненности, границ продуктивного пласта, крупности находящегося в нем металла (при разведке россыпей), содержания полезного компонента, содержания тонкодисперсного материала и глинистых примазок (при разведке стройматериалов) и т.п. Для точного определения этих параметров необходимо предотвратить обогащение или обеднение отбираемых проб керна по каждому интервалу опробования.
Геологическую информативность способов бурения при инженерно-геологических изысканиях оценивают по возможности определения физико-механических свойств грунтов, находящихся в естественном, природном залегании. Достигают этого путем выбуривания проб грунтов (монолитов) и исследования их свойств в специальных лабораториях или определением свойств грунтов непосредственно в стволе скважины. Последний способ перспективнее, так как может обеспечить более быстрое и качественное получение результатов исследований.
Таким образом, эксплуатационно-технологические возможности способа бурения определяются качеством выполнения поставленной задачи, его технической и экономической эффективностью.
Критериями оценки технической эффективности являются: мгновенная, средняя, рейсовая, техническая, парковая, цикловая скорости бурения; производительность за смену, сезон; время выполнения отдельных операций, проходки всей скважины или отдельного ее интервала; износ оборудования, обсадных труб и инструмента; универсальность; металлоемкость; энергоемкость; мощность; транспортабельность бурового оборудования и др.
Все виды скоростей и производительность бурения определяются затратами времени на выполнение того или иного процесса или операции. При выборе способа бурения для условий моря фактор времени является одним из важнейших критериев.
Критерии экономической эффективности включают в себя показатели, характеризующие затраты в рублях. ^Важнейшие из этих критериев — стоимость 1 м бурения, стоимость сооружения всей скважины или отдельного ее интервала, в большой степени, зависящие от технической эффективности. К ним же могут быть отнесены критерии, характеризующие затраты на содержание вспомогательных плавсредств, расход различных материалов, которые быстро изнашиваются при использовании их в сложных гидрологических и агрессивных условиях моря (например, обсадных и бурильных труб, тросовой оснастки буровых и якорных лебедок и т.д.).
Ударный способ бурения
Ударный способ бурения в зависимости от способа отбора керна подразделяют на: ударный сплошным забоем, клюющий кольцевым забоем и ударно-забивной или просто забивной кольцевымзабоем.
^ Ударное бурение сплошным забоемзаключается в разрушении пород забоя долотами, удалении продуктов разрушения желонками и получении образцов пород в виде шлама. Ударное бурение сплошным забоем на море переходят только при необходимости разрушения встречающихся валунов и крепких пород.
^ Клюющий способ бурения заключается в том, что буровой снаряд, включающий жестко соединенные между собой керноприемный стакан и утяжеленную трубу, сбрасывают на забой с некоторой высоты; стакан углубляется в породу, затем снаряд поднимают на поверхность для отбора керна из стакана. Величина углубления стакана в породы в рейсе зависит от энергии удара снаряда о забой. При бурении этим способом на море достичь значений энергии удара, достаточных для погружения стакана в породы на глубину хотя бы 0,1—0,2 м, трудно, так как буровой снаряд движется в скважине, заполненной водой, и испытывает большие гидравлические сопротивления движению. Поэтому на море этот способ бурения не применяют.
Основной разновидностью ударного бурения в рыхлых породах на море является забивной способ,обеспечивающий получение образцов пород в виде керна. Отбор керна при этом осуществляется нанесением ударов по трубчатому керноприемнику, снабженному упроченным кольцевым башмаком, который выполняет роль породоразрушающего инструмента. Выход керна при отборе его из обсадной колонны забивными керноприемниками примерно такой же, как и при отборе, его вдавливаемыми грунтоносами.
Таким образом, наибольший выход керна рыхлых пород на море имеет место при вдавливающем способе бурения со скоростью погружения обсадных труб и грунтоносов в породы менее 0,02 м/с и всего на 3—4 % меньше при забивном способе со скоростью погружения обсадных труб и забивных керноприемных снарядов в породы более 0,16 м/с.
Однако ударно-забивной способ позволяет бурить разведочные скважины любых необходимых диаметров в рыхлых, крепких и перемежающейся крепости породах. Бурение вдавливанием экономически оправдано только диаметром до 0,108 м и только в рыхлых отложениях без включения гальки и валунов и поэтому не вполне отвечает обобщенным ГМТ, предъявляемым к бурению разведочных скважин.
При бурении многих видов разведочных скважин требуется внедрение в коренные породы (структурные, разведочные на россыпи, уголь и т.д.). Выбуривание керна из таких пород возможно только вращательным способом. Это единственный способ производительного бурения, обеспечивающий получение качественного керна в твердых и крепких породах. Во многих условиях вращательный способ является незаменимым при инженерно-геологических изысканиях, так как позволяет получать колонки керна мягких и твердых пород без существенного искажения их природных физико-механических свойств.
Рис.17-Последовательность выполнения операций в рейсе при погружении колонны обсадных труб в породы и отборе керна из них новыми конструкциями забивного снаряда и забивного керноприемника: а - погружение в породы обсадной колонны; б - сбрасывание керноприемного стакана на забой скважины; в - спуск в скважину ударной штанги и погружение стакана в породы; г - извлечение штанги из скважины и настройка ловителя на захват стакана; д - спуск ударной штанги с ловителем в скважину, захват стакана и подъем их на поверхность; 1 - обсадная колонна труб; 2 - забивной снаряд; 3 - стакан керноприемный; 4 - ударная штанга; 5 - заблокированный ловитель. |
^
Вращательное бурение
Бурение вращателями роторными и перемещаемыми в вертикальных направляющих вышки. В условиях качки ПБУ наиболее сложно вращательное бурение станками шпиндельного типа. Существующие у них системы принудительных подач, подвески и разгрузки инструментов для условий моря непригодны, так как качка и дрейф ПБУ при жесткой связи ее со станком и последнего с бурильной колонной приводят к изгибам и поломкам труб вследствие смещения оси кронблока от оси скважины, периодическим отрывам бурового снаряда от забоя, утрате и разрушению керна, невозможности поддерживать необходимые режимы бурения. С целью повышения эффективности бурения с ПБУ вращательным способом отечественными и зарубежными специалистами предложен ряд конструктивно-технологических решений.
В АО "Дальморгеология" для бурения с плавсредств разработаны и применяются в производстве два типа вращателей: ВМБ-5 на базе ротора от буровой установки УРБ-3 и перемещаемый в вертикальных направляющих вращатель от бурового комплекса КГК-100. При отсутствии дрейфа, боковой и продольной качки ПБУ базовые варианты этих вращателей позволяют почти беспрепятственно перемещаться в вертикальном направлении плавсредству вместе с ротором и направляющими относительно бурового снаряда.
Опыт бурения вращателями описанных конструкций показал, что при волнении моря более 2 баллов на забой не передается заданная осевая нагрузка, так как ведущая ВМБ-5 заклинивается в роторе, а подвижной вращатель КГК-100 — в направляющих. Так как при бурении этими вращателями бурильная колонна обычно подвешена на тросе лебедки, жестко соединенной с плавсредством, его качка приводит к периодическим отрывам бурового снаряда от забоя, разрушает керн и не позволяет поддерживать необходимую осевую нагрузку на породоразрушающий инструмент.
Такие же трудности отмечаются при бурении в сложных гидрологических условиях моря с применением силового вертлюга, используемого для вращения бурильной колонны. Эта схема принципиально схожа со схемой бурения вращателем от КГК-100.
Общий недостаток вращателей, устанавливаемых на вращаемой обсадной колонне, — большие потери времени и труда на приведение в каждом рейсе вращателя в рабочее положение и на разворот извлекаемых из скважины обсадных труб, резьбовые соединения которых при вращательном бурении сильно затягиваются.
^ Подводное устьевое оборудование.
В практике бурения скважин с плавучих буровых средств (БС, ППБУ) широко применяют комплексы полдводного устьевого оборудования (ПУО), устанавливаемые на морском дне. Такое расположение позволяет наибольшие смещения плавсредства от центра скважины, при этом установленное на морском дне оборудование меньше подвержено механическим повреждениям.
Комплекс ПУО предназначен:
для обеспечения при бурении скважины гибкой замкнутой технологической связи между перемещающимся от воздействия волн и течений БС или ППБУ и неподвижным подводным устьем, установленным на морском дне;
для направления в скважину бурильного инструмента, обеспечения замкнутой циркуляции бурового раствора, управления скважиной при бурении и др.;
для надежного закрытия бурящейся скважины в целях предупреждения возможного выброса из скважины при аварийных ситуациях или при отсоединении буровой установки в случае больших волнений моря.
Существует несколько конструкции ПУО, обеспечивающих бурение скважин на разных глубинах моря – от 50 до 1800 м и более.
Рис. 18- Одноблочный подводный
устьевой комплекс.
Большая глубина установки ПУО предъявляет высокие требования к его свойствам: оборудование должно быть прочным, вибростойким, способным выдерживать большие внешние давления, быть герметичным и надежно управляемым на расстоянии. Конструкция узлов комплекса должна обеспечивать точность стыковки должно быть высоким, обеспечивающим нормальную работу и управление ПУО.
Особое внимание уделяют расположению механизмов связи – надежным устройствам, установленным на БС или ППБУ, которые подвергаются действию волн, течения и ветра.
Недостатки размещения ПУО на дне моря – сложность управления, эксплуатации и ремонта.
Многолетний опыт бурения с плавучих буровых средств определил в основном две типовые конструкции скважин с подводным устьем.
В первой конструкции (для глубин скважин примерно 5000-6500 м) применяют фундаментальную колонну (направление) диаметром 762 мм, кондуктор -508 мм, первую промежуточную колонну – 340 мм, вторую промежуточную колонну – 178 мм. Диаметр эксплуатационной колонны обеспечивает спуск и установку двухколонных НКТ для одновременно – раздельной эксплуатации пластов. Благодаря такому сочетанию диаметров с большими зазорами между колоннами обеспечивается надежное крепление скважин.
Вторую конструкцию преимущественно применяют в условиях бурения на меньшие глубины при более простой конструкции скважин. В этой конструкции используют фундаментальную колонну диаметром 762 мм, кондуктор -406 мм, промежуточную колонну -273 мм, эксплуатационную колонну- 178 мм.
В практике буровых работ на море с БС и ППБУ применяют одно- или двухблочную конструкцию ПУО.
Некоторые одноблочные конструкции преимущественно используют на больших глубинах вод, в несложных двух- и трехколонных конструкциях скважин и на небольших глубинах бурения.
Двухблочные конструкции применяют преимущественно на небольших глубинах вод, в сложных четырех- и пятиколонных конструкциях скважин и на больших глубинах бурения.
Показанный на рисунке 18 одноблочный подводный устьевой комплекс состоит из следующих узлов:
1- пульт бурильщика; 2-пульт управления штуцерным манифольдом; 3-аккумуляторная установка; 4- гидравлическая силовая установка; 5-дистанционный пульт управления;6-шланговые барабаны 7-гиравлический спайдер;8- верхнее соединения морского стояка;9-телескопический компенсатор; 10-соединение ; 11- угловой компенсатор; 12- нижний узел морского стояка; 13-направляющие; 14- подводные задвижки; 15-цанговая муфта; 16- опорная плита;17-акустический датчик; 18- плашечные превенторы; 19-штуцерный манифольд; 20-морской стояк.
Преимущества одноблочной конструкции ПУО- сокращение времени на установку и монтаж комплекса, так установленный одноблочный комплекс ПУО используется в течение всего времени бурения скважины.
Н а рисунке 18 приведена одноблочная конструкция ПУО, обеспечивающая бурение многоколонных глубоких скважин (фирма «Камерон», США).
Особенность конструкции – наличие эластомерного элемента, состоящего из сферических, стальных пластин и эластической набивки. Элемент может выдерживать большие сжимающие нагрузки и срезающие усилия. Компенсатор может отклоняться в любом направлении вокруг центра вращения при изгибе морского стояка.
Морской стояк (рис 19).
Морской стояк является одним из важнейших и ответственных узлов общего комплекса ПУО.
В процессе буровых работ морской стояк эксплуатируется в сложных условиях. Практикой работ установлено, что такие условия эксплуатации приводят к повреждению его отдельных узлов. Причинами повреждений морского стояка могут быть длительный период воздействия на узлы суровых морских условий, использование буровых растворов большей плотности, нарушение рекомендации, недостаточное натяжение нижней секции морского стояка и слабый контроль за изменением угла поворота шарового соединения при отклонения стояка от вертикали, использование недостаточно надежных узлов соединений, не соответствующих условиям работы в данном районе, а также недостаточный опыт работы при эксплуатации стояков и отсутствие соответствующей теоретической базы для их расчета.
Рис.19-Морской стояк
^ 1-верхняя секция с отклонителем потока и шаровым компенсатором; 2- телескопический компенсатор; 3-натяжные канаты; 4- промежуточная секция;5-нижняя секция с шаровым и гидравлическим соединителем
^ Лекция № 9. Классификация морских стационарных платформ.
Морская стационарная платформа — уникальное гидротехническое сооружение, предназначенное для установки на ней бурового, нефтепромыслового и вспомогательного оборудования, обеспечивающего бурение скважин, добычу нефти и газа, их подготовку, а также оборудования и систем для производства других работ, связанных с разработкой морских нефтяных и газовых месторождений (оборудование для закачки воды в пласт, капитального ремонта скважин, средства автоматизации морского промысла, оборудование и средства автоматизации по транспорту нефти, средства связи с береговыми объектами и т. п.).
При разработке морских месторождений в основном два главных фактора определяют направление работ в области проектирования и строительства гидротехнических объектов в море. Такими факторами являются ограничения, накладываемые условиями окружающей среды, и высокая стоимость морских операций. Эти факторы в основном обусловливают все решения в проектировании и конструировании МСП, выборе оборудования, способов строительства и организации работ в данной акватории моря. Таким образом, МСП являются индивидуальными конструкциями, предназначенными для конкретного района работ.
В последние годы, в связи с широким разворотом работ по освоению морских нефтяных месторождений в различных районах Мирового океана, предложен и осуществлен ряд новых типов и конструкций МСП. Эти типы и конструкции МСП различают по следующим признакам: способу опирания и крепления к морскому дну; типу конструкции; по материалу и другим признакам.
Рис. 20-Классификация глубоководных МСП
По способу опирания и крепления к морскому дну МСП бывают свайные, гравитационные, свайно-гравитационные, маятниковые и натяжные, а также плавающего типа, по типу конструкции сквозные, сплошные и комбинированные, по материалу конструкции — металлические, железо-бетонные и комбинированные. Сквозные конструкции выполняются решетчатыми. Элементы решетки занимают относительно небольшую площадь по сравнению с площадью граней пространственной фермы. Сплошные конструкции (например, бетонные) непроницаемы по всей площади внешнего контура сооружения.
На рис. 20 приведена классификация глубоководных МСП.
^ На первом уровне классификациипроведено деление МСП на жесткие и упругие. По мнению авторов, такое деление является объективным, так как оно отражает конструкцию платформы (размеры, конфигурацию) и указывает период собственных колебаний, который у жестких составляет 4—6 с и упругих превышает 20 с, а в отдельных случаях достигает 138 с
^ На втором уровне классификации жесткие конструкции классифицированы по способу обеспечения их устойчивости под воздействием внешних нагрузок на гравитационные, свайные и гравитационно-свайные. В первом случае сооружение не сдвигается относительно морского дна благодаря собственной массе и во втором— оно не смещается из-за крепления его сваями. Гравитационно-свайные сооружения не сдвигаются благодаря собственной массе и системе свай.
Третий уровень классификации жестких МСП характеризует материал конструкции: бетон, сталь или бетонсталь.
Упругие конструкции на втором уровне по способу крепления разделены на башни с оттяжками, плавучие башни и гибкие башни. (рис.21).
Башни с оттяжками сохраняют свою устойчивость системой оттяжек, понтонов плавучести и противовесов. Плавучие башни подобны качающемуся маятнику, они возвращаются в состояние равновесия с помощью понтонов плавучести, расположенных в верхней части конструкции. Гибкие башни отклоняются от вертикали под действием волн, но при этом они, подобно сжатой пружине, стремятся возвратиться в состояние равновесия.
Рис.21 Схемы МСП, применяемые на Каспийском море: а — четырехблочная МСП; 1 — опорный блок; 2 -верхнее строение; 3 — подвышенные конструкции; 4 — буровая вышка; 5 — причально-посадочное устройство; 6 — водоотделяющая колонна (обсадная); 7 — свайный фундамент; б" — двухблочная МСП; 1— опорный блок; 2 — верхнее строение; 3 — причально-посадочное устройство; 4 — буровая вышка; 5 — водоотделяющая колонна; 6 — свайный фундамент; в— моноблочная МСП; 1 — опорный блок; 2 — верхнее строение, модули; 3 — буровая вышка; 4 — водоотделяющая колонна; 5 — свайный фундамент; 6 — причально-посадочное устройство |
На последнем уровне классификации имеется 10 групп конструкций, каждая из которых обозначается начальными буквами слов английского языка, например RGS — риджит гревити стил (жесткая гравитационная стальная), RGC (жесткая гравитационная бетонная) и т. д.
Из рассмотренных в работе 40 конструкций глубоководных МСП (глубина моря более 300 м) 76% составляют жесткие, в том числе 45% стальные ферменные со свайным креплением, 26% гравитационные и 5% гравитационно-свайные. Среди упругих МСП 13% плавучие башни, 8% башни с оттяжками и 3% гибкие башни. Отмечено увеличение доли проектов стальных опор в зависимости от глубины моря. При глубинах моря 305— 365 м стальные опоры составляют 13%, а при глубинах от 365 до 520 м — 50%. Из выполненных проектов 79% — стальные опоры, 15% — бетонные и 6% — стальбетод.
Наибольшее число проектов 57% разработано для вод глубиной 305—365 м. 30% —для глубин 365—460 м и 13% — на глубины больше 460 м.
Жесткие МСП
Морские стационарные платформы, закрепляемые сваями МСП пирамидального типа
МСП, закрепляемые сваями, представляют собой гидротехническое металлическое стационарное сооружение, состоящее из опорной части, которая крепится к морскому дну сваями, и верхнего строения, оснащенного комплексом технологического оборудования и вспомогательных средств и устанавливаемого на опорную часть МСП.
Опорная часть может быть выполнена из одного или нескольких блоков в форме пирамиды или прямоугольного параллелепипеда. Стержни решетки блока изготовляют в основном из металлических трубчатых элементов. Количество блоков опор определяется надежностью и безопасностью работы в данном конкретном районе, технико-экономическими обоснованиями и наличием грузоподъемных и транспортных средств на заводе — изготовителе опорной части МСП.
На рис. 21 а, б, в даны схемы МСП, применяемые на Каспийском море. Ниже приведены краткие технические данные морской стационарной платформы для одновременного бурения скважин двумя буровыми установками на месторождении им. 28 апреля на глубине 100 м. Платформа состоит из двух опорных блоков, установленных на расстоянии 31 м друг от друга, и трехпалубного верхнего строения, которое включает 14 модулей, в том числе: два подвышечных, шесть модулей нижней палубы с эксплуатационным оборудованием 450 т каждый, шесть модулей верхней палубы с буровым оборудованием до 600 т каждый.
На платформе размещен комплекс технологического и вспомога-тельного оборудования, систем, инструмента и материалов, обеспечивающих бурение скважин двумя буровыми установками.
Платформа оснащена блочными жилыми и бытовыми помещениями, вертолетной площадкой, погрузочно-разгрузочными кранами и др.
С платформы предусмотрено бурение 12 скважин.
Размер в плане, мм: Масса, тыс. т:
производственной площад- платформы .............. 12,1
ки ......................................... 71 Х50 опорного блока ....... 2,04
опорного блока .......................... 16 X 49
Опорные блоки крепятся к морскому грунту сваями. На опорные блоки устанавливается верхнее трехпалубное строение с модулями, оснащенными соответствующими технологическим и вспомогательным оборудованием и системами.
Как известно, затраты на обустройство морских нефтегазовых месторождении составляют свыше 50 % всех капиталовложений. Достаточно сказать, что стоимость отдельных нефтегазопромысловых платформ достигает 1—2 млрд долл.
Например, эксплуатирующаяся в настоящее время глубоководная гравитационная платформа для месторождения Тролль в Северном море оценивается в сумму свыше 1 млрд долл. Затраты на прокладку современного глубоководного магистрального трубопровода составляют 2—3 млн долл. за километр. Каждый новый этап в освоении шельфа вызывает к жизни новые технические решения, соответствующие возникающей проблеме. Разработан целый спектр технических средств освоения шельфа, выбор которых определяется совокупностью технологических, геолого-, гидрометеорологических, экономических, политических и других условий.
Рис. 22 Современные глубоководные платформы, используемые для разработки шельфовых нефтегазовых месторождений
. Так, например, для выполнения работ по разведке, бурению скважин и добыче нефти и газа используются различные типы технических средств, изображенных на рис.22.
Среди инженерных компаний, успешно работающих в области создания новой техники и морских нефтегазовых сооружений, приоритетные позиции занимают «Браун энд Рут», «Мак-Дермот», «Квернер», «Аккер» и др.
Советский опыт в этой области накоплен организациями Азербайджана, где институт Гипроморнефтегаз спроектировал, а Бакинский завод глубоководных оснований изготовил и установил более десяти металлических платформ на глубинах около 100 м. Институтом ВНИПИШельф разработаны платформы высотой около 30 метров для газовых месторождений Крыма. Морские трубопроводы диаметром до 500 — 700 мм проложены на Каспийском и Черном морях и на Дальнем Востоке через Татарский пролив.
Гравитационные морские стационарные платформы (ГМСП)
Гравитационные МСП отличаются от металлических свайных МСП как по конструкции, материалу, так и по технологии изготовления, способу их транспортировки и установки в море.
Общая устойчивость ГМСП при воздействии внешних нагрузок от волн и ветра обеспечивается их собственной массой и массой балласта, поэтому не требуется их крепление сваями к морскому дну. ГМСП применяют в акваториях морей, где прочность основания морского грунта обеспечивает надежную устойчивость сооружения.
Рис. 23-Схема платформы типа «Кондип»:
^ 1 — емкость с топливом; 2 -- стенки ячейки; 3 — верхняя крышка; 4 — опора хозяйственного оборудования; 5 — верхнее строение; 6 — буровая опорная колонна; 7 — хранилище нефти; 8 — нижняя крышка; 9 — балласт; 10 — стальная юбка; 11 — штифт
ГМСП — очень массивные объекты, состоящие из двух частей: верхнего строения и опорной части. Опорная часть состоит из одной или нескольких колонн, изготовляемых из железобетонa. Колонны цилиндрической или конической формы опираются на многоячеистую монолитную базу (рис.23)
База относительно небольшой высоты по сравнению с колоннами, состоит из ячеек-понтонов, жестко связанных между собой, и заканчивается в нижней части юбками с развитой общей опорной площадью на морское дно. Размеры опорной многоблочной плиты бывают в длину 180 м и по ширине до 135 м.
Преимущество ГМСП — непродолжительное время установки их в море, примерно 24 ч вместо 7—12 мес, необходимых для установки и закрепления сваями металлических свайных платформ. Собственная плавучесть и наличие системы балластировки позволяют буксировать ГМСП на большие расстояния и устанавливать их в рабочее положение на месте эксплуатации в море без применения дорогостоящих грузоподъемных и транспортных средств. Преимуществом их также является возможность повторного использования на новом месторождении, повышенные огнестойкость и виброустойчивость, высокая сопротивляемость морской коррозии, незначительная деформация под воздействием нагрузок и более высокая защита от загрязнения моря.
ГМСП применяют в различных акваториях Мирового океана. Особенно широко они используются в Северном море.
К недостаткам гравитационных платформ относится необходимость тщательной подготовки места их установки. Особое внимание следует уделять на опасность аварий, которые могут возникнуть при разжижении грунта, его поверхностной и внутренней эрозии, местных размывах.
Осн.: 2. [78-87], 5. [ 443-446],
Доп.:7. [964-970 ], [985-987 ]
Контрольные вопросы:
1. В чем назначение платформ ?
2. Какие виды платформ вы знаете?
3. Расскажите про преимущества ГМСП.
4.Для каких условий применяют ГМСП?
5. Назовите недостатки ГМСП.
^
Упругие МСП
Обычно при проектировании МСП статическую прочность конструкции рассчитывают на действие максимальных нагрузок, повторяющихся один раз в 100 лет, и производят поверочный расчет на динамические и циклические нагрузки.
Упругой башней называют относительно тонкую стальную пространственную ферму из стержней с довольно равномерным по высоте расстоянием между горизонтальными поясами.
К классу упругих башен относят находящуюся в эксплуатации в Мексиканском заливе на глубине 305 м МСП «Лена». Конструкция ее представляет собой ферму квадратного сечения со стороной квадрата 36,6 36,6 м, высотой 320 м и массой 21 тыс. т. В верхней части фермы имеется 16 опор диаметром 1220 мм, на которых установлено верхнее строение. Нижняя часть башни имеет 12 таких опор. В пределах верхней половины башни размещены 12 понтонов диаметром 6,1 м, длиной 36,6 м, обеспечивающие 9100 т плавучести. Понтоны стабилизируют платформу, уменьшают давление на фундамент, значительно облегчают монтаж платформы и оттяжек.
Используя опыт эксплуатации МСП «Лена», фирма «Эксон» изучила шесть проектов глубоководных МСП, разработанных специалистами фирмы. Нагрузки от окружающей среды и гравитационные, действующие на МСП «Лена», распределяются на сваи, оттяжки, инерционность конструкции и понтоны. Перераспределяя эти нагрузки на перечисленные узлы конструкции, можно достичь оптимального варианта решения конструкции. Например, вес палубы можно передать на сваи или компенсировать подъемной силой понтонов. Понтоны, кроме этого, компенсирую горизонтальные силы, обеспечивая устойчивость платформы, уменьшают или полностью снимают нагрузки на оттяжки. Инерция основания увеличивает период боковых колебаний, снижает их амплитуду и соответственно снижает динамические нагрузки на оттяжки и сваи.
Рис. 24-Схема распределения нагрузок между |