В настоящее время ЖРД широко используются в космических программах.
Как правило, это двухкомпонентные ЖРД с криогенными компонентами.
В военной технике ЖРД применяются относительно редко, преимущественно на тяжёлых ракетах.
Чаще всего это двухкомпонентные ЖРД на высококипящих компонентах.
Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.
К преимуществам ЖРД можно отнести следующее:
- самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4500 м/с для пары кислород - водород, для керосин - кислород - 3500 м/с).
- управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском.
Это необходимо при маневрировании аппарата в космическом пространстве.
- при создании больших ракет, например носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твердотопливными двигателями (РДТТ).
Во-первых, за счёт более высокого удельного импульса, а во-вторых, за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подаётся в камеру сгорания с помощью насосов.
За счёт этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими.
В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса.
Чем больше объём топлива в ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.
Недостатки ЖРД:
- ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твердотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого).
Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоёмка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твердотопливным двигателям ввиду их более высокой надёжности, мобильности и боеготовности.
- компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков.
Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.
- В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:
- Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).
- Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов («Вояджер», «Галилео»).
Схема двухкомпонентного ЖРД.
1 - магистраль горючего,
2 - магистраль окислителя, 3 - насос горючего,
4 - насос окислителя, 5 – турбина,
6 – газогенератор,
7 - клапан газогенератора (горючее),
8 - клапан газогенератора (окислитель),
9 - главный клапан горючего,
10 - главный клапан окислителя,
11 - выхлоп турбины, 12 - форсуночная головка,
13 - камера сгорания, 14 – сопло.
Компоненты топлива - горючее (1) и окислитель (2) поступают из баков на центробежные насосы (3, 4), приводимые в движение газовой турбиной (5).
Под высоким давлением компоненты топлива поступают на форсуночную головку (12) - узел, в котором размещены форсунки, через которые компоненты нагнетаются в камеру сгорания (13), перемешиваются и сгорают, образуя нагретое до высокой температуры газообразное рабочее тело, которое, расширяясь в сопле, совершает работу и преобразует внутреннюю энергию газа в кинетическую энергию его направленного движения.