II.Солнце – источник энергии
Содержание
Введение
I.Общие сведения о солнце
II.Солнце – источник энергии
II.I.Потенциал солнечной энергии
III.Использование солнечной энергии
III.I.Пассивное использование солнечной энергии
III.II.Активное использование солнечной энергии
IV.Солнечные коллекторы и их виды
IV.I.Солнечные системы
V.Солнечная архитектура
Заключение
Список использованных источников
Введение
Тепловая энергия накапливается в таких материалах, которые медленно поглощают тепло, когда в помещении теплиц из поликарбоната тепло и медленно отдают его назад, когда помещение начинает остывать. Вода — эффективный материал для поглощения тепловой энергии. Именно поэтому климат на побережье более мягкий, там нет резких перепадов температур, как на территориях, расположенных далеко от воды. Кроме того, вода стоит очень дешево, но довольно трудно (хотя и не невозможно) вделать в стену водный резервуар для накопления тепла. Именно поэтому плотные материалы типа песка, камня гораздо чаще используются для накопления тепловой энергии в оранжереях.
Наиболее очевидной причиной использования систем накопления тепловой энергии является сокращение затрат на потребляемую энергию, поскольку стоимость энергии, потребляемой в периоды пиковых нагрузок, выше стоимости энергии, потребляемой в другое время. В ряде проектов с использованием систем накопления тепловой энергии, отмеченных премиями Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE) за технологические достижения, подробно рассматриваются аспекты, связанные со снижением затрат. Меньшее внимание уделяется уменьшению размеров оборудования и сокращению инфраструктуры.
Приводимый в этой статье анализ основывается на показателях следующих систем кондиционирования воздуха с накоплением тепловой энергии:
• Системы с чиллерами. В годы становления технологии TES успешно применялись разнообразные системы, включая системы подачи хладагента, оборудование производства льда и пр. Однако 99 % коммерческих систем кондиционирования воздуха с накоплением тепловой энергии используют для холодоснабжения стандартный чиллер. Это объясняется тем, что чиллеры отличаются простой, надежной и дешевой конструкцией, широким диапазоном производительности. Чиллеры используются для охлаждения воды или водного раствора гликоля.
• Накопители со льдом. В проектах, при реализации которых нет существенных ограничений по площадям, занимаемым инженерным оборудованием, широко применяется накопление охлажденной воды. Однако, поскольку системы климатизации часто устанавливаются в реконструированных зданиях, в которых пространство, занимаемое инженерным оборудованием, ограничено, более целесообразным является применение льда.
• Замкнутые системы. В больших системах холодоснабжения для накопления энергии и для теплообмена применяются вода и/или лед. Такие «открытые» системы создают дополнительные гидравлические проблемы, которые должны решаться самым тщательным образом. Однако большинство современных систем накопления тепловой энергии разделяют среду накопления энергии и жидкость для теплообмена, в результате чего характеристики таких систем аналогичны характеристикам систем с чиллерами.
I. Общие сведения о Солнце
Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.
Характеристики Солнца
Масса MS~2*1023 кг
RS~629 тыс. км
V= 1,41*1027 м3, что почти в 1300 тыс. раз превосходит объем Земли,
средняя плотность 1,41*103 кг/м3,
светимость LS=3,86*1023 кВт,
эффективная температура поверхности (фотосфера) 5780 К,
период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,
ускорение свободного падения 274 м/с2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).
Строение Солнца
В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.
Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы “печка” внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.
Рис.1 Строение Солнца
На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.
Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое "зерно" размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области - солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть "окрашенной сферой". Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы - корона.
Рис 2. Гироскопические накопители энергии
К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. К тому же время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными… Впрочем, современные технологии позволяют кардинально увеличить время хранения — вплоть до нескольких месяцев.
Наконец, ещё один неприятный момент — запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении. Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.
Особенно перспективны так называемые супермаховики, состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше.
Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков большого монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.
Современные конструкции с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. По оптимистичным оценкам, использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз — до 2-3 ГДж/кг (обещают, что одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость этого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам… Подробнее о маховичных накопителях можно почитать в книге Нурбея Гулиа.
IV.I.Солнечные системы
Солнечные системы горячего водоснабжения
Горячее водоснабжение - наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50-70% потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования. В Южной Европе солнечный коллектор может обеспечить 70-90% потребляемой горячей воды. Нагрев воды с помощью энергии Солнца - очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10-15%, тепловые солнечные системы показывают КПД 50-90%. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.
Термосифонные солнечные системы
Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов). В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части:
плоский коллектор (абсорбер);
трубопроводы;
Бак-накопитель для горячей воды (бойлер).
Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы.
Такие установки популярны в субтропических и тропических областях.
Солнечные системы подогрева воды
Чаще всего используются для обогрева бассейнов. Несмотря на то, что стоимость такой установки меняется в зависимости от размера бассейна и других специфических условий, если солнечные системы устанавливаются с целью снижения или отказа от потребления топлива или электроэнергии, они за два-четыре года окупаются за счет экономии энергии. Более того, обогрев бассейна позволяет на несколько недель продлить купальный сезон без дополнительных затрат.
В большинстве зданий не составляет труда устроить солнечный обогреватель для бассейна. Он может сводиться к простому черному шлангу, по которому в бассейн подается вода. Для открытых бассейнов нужно всего лишь установить абсорбер. Закрытые бассейны требуют установки стандартных коллекторов, чтобы обеспечить теплую воду и зимой.
Сезонное аккумулирование тепла
Есть и такие установки, которые позволяют зимой использовать тепло, накопленное летом солнечными коллекторами и сохраненное при помощи больших аккумулирующих баков (сезонное аккумулирование). Здесь проблема заключается в том, что количество жидкости, необходимое для обогрева дома, сопоставимо с объемом самого дома. Вдобавок, хранилище тепла необходимо очень хорошо изолировать. Чтобы обычный домашний бак-накопитель сохранил большую часть тепла в течение полугода, его пришлось бы обернуть в слой изоляции толщиной 4 метра. Поэтому выгодно делать объем накопительной емкости очень большим. Из-за этого снижается отношение площади поверхности к объему.
Крупные солнечные установки центрального отопления используются в Дании, Швеции, Швейцарии, Франции и США. Солнечные модули устанавливают прямо на земле. Без хранилища такая солнечная отопительная установка может покрыть около 5% годовой потребности в тепле, так как установка не должна вырабатывать больше, чем минимальное количество потребляемого тепла, включая потери в районной системе отопления (до 20% при передаче). Если есть хранение дневного тепла в ночное время, то солнечная отопительная установка может покрывать 10-12% потребности в тепле, включая потери при передаче, а с сезонным хранением тепла - до 100%. Существует также возможность комбинирования районного отопления с индивидуальными солнечными коллекторами. Районную систему отопления можно отключить на лето, когда горячее водоснабжение обеспечивается Солнцем, и нет потребности в отоплении.
V. Солнечная архитектура
Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий. Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.
Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия.
Пассивное использование солнечного света обеспечивает примерно 15% потребности обогрева помещений в стандартном здании и является важным источником энергосбережения. При проектировании здания необходимо учитывать принципы пассивного солнечного строительства для максимального использования солнечной энергии. Эти принципы можно применять везде и практически без дополнительных затрат.
Во время проектирования здания также следует учитывать применение активных солнечных систем, таких как солнечные коллекторы и фотоэлектрические батареи. Это оборудование устанавливается на южной стороне здания. Чтобы максимизировать количество тепла в зимнее время, солнечные коллекторы в Европе и Северной Америке должны устанавливаться с углом наклона более 50° от горизонтальной плоскости. Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Важно помнить, что близкое расположение ванной комнаты и кухни позволяет сэкономить на установке активных солнечных систем (в этом случае можно использовать один солнечный коллектор на два помещения) и минимизировать потери энергии на транспортировку. Главным критерием при выборе оборудования является его эффективность.
Заключение
В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.
В настоящее время разрабатываются новые космические проекты, имеющие целью исследование Солнца, проводятся наблюдения, в которых принимают участие десятки стран. Данные о процессах, происходящих на Солнце, получают с помощью аппаратуры, установленной на искусственных спутниках Земли и космических ракетах, на горных вершина и в глубинах океанов.
Большое внимание нужно уделить и тому, что производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т.д.
Сейчас учёные исследуют природу Солнца, выясняют его влияние на Землю, работают над проблемой применения практически неиссякаемой солнечной энергии.
Литература
Поиски жизни в Солнечной системе: Перевод с английского. М.: Мир, 1988 г., с. 44-57
Жуков Г.Ф. Общая теория энергии.//М: 1995., с. 11-25
Дементьев Б.А. Ядерные энергетические реакторы. М., 1984, с. 106-111
Тепловые и атомные электрические станции. Справочник. Кн. 3. М., 1985, с. 69-93
Энциклопедический словарь юного астронома, М.:Педагогика,1980 г., с. 11-23
Видяпин В.И., Журавлева Г.П. Физика. Общая теория.//М: 2005,с. 166-174
Дагаев М. М. Астрофизика.//М:1987,с. 55-61
Тимошкин С. Е. Солнечная энергетика и солнечные батареи. М., 1966, с. 163-194
Илларионов А. Г. Природа энергетики.//М: 1975., с. 98-105
Содержание
Введение
I.Общие сведения о солнце
II.Солнце – источник энергии
II.I.Потенциал солнечной энергии
III.Использование солнечной энергии
III.I.Пассивное использование солнечной энергии
III.II.Активное использование солнечной энергии
IV.Солнечные коллекторы и их виды
IV.I.Солнечные системы
V.Солнечная архитектура
Заключение
Список использованных источников
Введение
Тепловая энергия накапливается в таких материалах, которые медленно поглощают тепло, когда в помещении теплиц из поликарбоната тепло и медленно отдают его назад, когда помещение начинает остывать. Вода — эффективный материал для поглощения тепловой энергии. Именно поэтому климат на побережье более мягкий, там нет резких перепадов температур, как на территориях, расположенных далеко от воды. Кроме того, вода стоит очень дешево, но довольно трудно (хотя и не невозможно) вделать в стену водный резервуар для накопления тепла. Именно поэтому плотные материалы типа песка, камня гораздо чаще используются для накопления тепловой энергии в оранжереях.
Наиболее очевидной причиной использования систем накопления тепловой энергии является сокращение затрат на потребляемую энергию, поскольку стоимость энергии, потребляемой в периоды пиковых нагрузок, выше стоимости энергии, потребляемой в другое время. В ряде проектов с использованием систем накопления тепловой энергии, отмеченных премиями Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE) за технологические достижения, подробно рассматриваются аспекты, связанные со снижением затрат. Меньшее внимание уделяется уменьшению размеров оборудования и сокращению инфраструктуры.
Приводимый в этой статье анализ основывается на показателях следующих систем кондиционирования воздуха с накоплением тепловой энергии:
• Системы с чиллерами. В годы становления технологии TES успешно применялись разнообразные системы, включая системы подачи хладагента, оборудование производства льда и пр. Однако 99 % коммерческих систем кондиционирования воздуха с накоплением тепловой энергии используют для холодоснабжения стандартный чиллер. Это объясняется тем, что чиллеры отличаются простой, надежной и дешевой конструкцией, широким диапазоном производительности. Чиллеры используются для охлаждения воды или водного раствора гликоля.
• Накопители со льдом. В проектах, при реализации которых нет существенных ограничений по площадям, занимаемым инженерным оборудованием, широко применяется накопление охлажденной воды. Однако, поскольку системы климатизации часто устанавливаются в реконструированных зданиях, в которых пространство, занимаемое инженерным оборудованием, ограничено, более целесообразным является применение льда.
• Замкнутые системы. В больших системах холодоснабжения для накопления энергии и для теплообмена применяются вода и/или лед. Такие «открытые» системы создают дополнительные гидравлические проблемы, которые должны решаться самым тщательным образом. Однако большинство современных систем накопления тепловой энергии разделяют среду накопления энергии и жидкость для теплообмена, в результате чего характеристики таких систем аналогичны характеристикам систем с чиллерами.
I. Общие сведения о Солнце
Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.
Характеристики Солнца
Масса MS~2*1023 кг
RS~629 тыс. км
V= 1,41*1027 м3, что почти в 1300 тыс. раз превосходит объем Земли,
средняя плотность 1,41*103 кг/м3,
светимость LS=3,86*1023 кВт,
эффективная температура поверхности (фотосфера) 5780 К,
период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,
ускорение свободного падения 274 м/с2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).
Строение Солнца
В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.
Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы “печка” внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.
Рис.1 Строение Солнца
На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.
Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое "зерно" размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области - солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть "окрашенной сферой". Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы - корона.
II.Солнце – источник энергии
Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.
Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет её снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.
Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создаёт гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.
Солнечный свет, попадая на растения, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает её, формирует почвенный климат, давая тем самым жизненную силу находящимся в почве семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).
Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% - на процесс образования фотосинтеза в природе.