Как и когда сформировался Млечный Путь

Млечный Путь, вероятно, почти так же стар, как Вселенная. Ему наверняка больше 12 миллиардов лет; по оценкам ученых, именно таков возраст некоторых самых старых из его звезд, причем, по другим оценкам, некоторые звезды еще старше. Увы, никто из тех, кого мы знаем, не был свидетелем его рождения. В то время даже Земли еще не существовало, поэтому оценки очень приблизительны.

Форма и размеры Млечного Пути обусловлены действующими во Вселенной законами гравитации. Давным-давно под воздействием гравитации гигантское облако первичного газа собралось воедино и начало сжиматься. Когда небольшие сгустки внутри этого облака сжимались еще быстрее, чем все облако в целом, формировались звезды. Большое облако начинает вращаться очень медленно, но, по мере уменьшения, его вращение ускоряется, происходит уплощение его формы и получается нынешняя форма спирального диска. И вот вам Млечный Путь!

Если у вас есть другая теория на сей счет, попробуйте сами стать астрономом и, быть может, однажды вы напишете собственную книгу.

Звездные скопления

Звездные скопления (star clusters) — это просто группы звезд, расположенных внутри и вокруг галактики. Это не случайные группы, поскольку они вместе сформировались из общего облака и, в большинстве случаев, удерживаются вместе силами гравитации.

Существует три основных типа звездных скоплений: открытые скопления, шаровые скопления и ОВ-ассоциации.

Великолепные изображения звездных скоплений можно найти на Web-сайте Англо-австралийской обсерватории по адресу www.аао. gov.au. Можно также обратиться к книге David Malin, The Invisible Universe (Bulfinch Press, 1999), в которой собрана коллекция прекрасных фотографий из этой обсерватории.

Открытые скопления

Открытые скопления (open clusters) содержат от десятков до тысяч звезд, не имеют определенной формы и расположены на диске галактики Млечный Путь. Ширина типичного звездного скопления — 30 световых лет. В отличие от шаровых скоплений, у них нет высокой концентрации звезд по направлению к центру (если такая концентрация есть вообще) и обычно они намного моложе. Это прекрасные объекты для наблюдения в малые телескопы и бинокли, и некоторые из них можно увидеть невооруженным глазом.

Рассмотрим самые знаменитые и легко видимые открытые скопления в Северном полушарии.

Плеяды, расположенные в северо-западной части созвездия Тельца.

Если на Плеяды, известные также как Семь Сестер, смотреть невооруженным глазом, то они похожи на крошечный ковшик. Вы можете оценить остроту своего зрения по тому, сколько звезд сумеете сосчитать в Плеядах. Заметим, что это 45-й объект каталога Мессье, М45 (о каталоге Мессье говорилось и в главе 1). Затем посмотрите на Плеяды в бинокль и снова посчитайте количество звезд, которые вы видите. Самая яркая звезда в созвездии Плеяд — Эта Тельца (η Тельца) 3-й звездной величины, известная также под именем Альциона. (Если вы забыли, что такое звездная величина, обратитесь к главе 1.)

Гиады, также расположенные в созвездии Тельца.

Это также прекрасный объект для наблюдения невооруженным глазом. В него входит большинство звезд, составляющих букву "V" в голове Тельца. Вы не пропустите это скопление, потому что в букву "V" входит яркая красная звезда (красный гигант) Альдебаран, или Альфа Тельца 1-й звездной величины (рис. 12.2). На самом деле Альдебаран не находится в Гиадах, он далеко за их пределами, но наблюдателю с Земли кажется, что он входит в это звездное скопление.

Рис. 12.2. В созвездии Тельца есть яркая звезда (красный гигант) Альдебаран

Гиады выглядят намного больше Плеяд, потому что от Земли до них только около 150 световых лет, а не 400 световых лет, как до Плеяд.

Двойное Скопление в созвездии Персея.

Двойное Скопление прекрасно выглядит в бинокль и особенно в малый телескоп. Это два звездных скопления под номерами NGC 869 и NGC 884, каждое из которых, видимо, находится на расстоянии свыше 7000 световых лет от Земли. NGC расшифровывается как New General Catalogue (Новый общий каталог), который впервые появился в 1888 году.

Улей (Beehive) в созвездии Рака.

Улей (М44, т. е. 44-й объект по каталогу Мессье) — это самый привлекательный объект в созвездии Рака, которое состоит из тусклых звезд. Если смотреть невооруженным глазом, то это скопление выглядит как красивое размытое пятно, а если в бинокль — то как бесчисленный рой звезд.

А теперь перечислим самые красивые открытые скопления, видимые в Южном полушарии.

NGC 6231 в созвездии Скорпиона.

NGC 6231 — это "южный" объект, но летними вечерами он виден в большей части Северного полушария. Нужно только находиться в темном месте, вдали от городских огней, там, где южную часть неба ничто не заслоняет.

Шкатулка Драгоценностей (Jewel Box) в созвездии Южного Креста.

В скопление Шкатулка Драгоценностей входит яркая звезда Каппа Креста (κ Креста). Южный Крест — неизменный любимец наблюдателей из Южного полушария. Если будете совершать круиз по южным морям, постарайтесь настоять на том, чтобы на борту находился лектор по астрономии. Он с радостью покажет вам Южный Крест. А с помощью бинокля вы сможете насладиться прекрасным видом Шкатулки Драгоценностей.

Шаровые скопления

Шаровые скопления (globular clusters) — это "дома для престарелых" галактики Млечный Путь. Они почти так же стары, как сама галактика (некоторые специалисты полагают, что это были первые сформировавшиеся объекты галактики Млечный Путь), состоят из очень старых звезд, среди которых много красных гигантов и белых карликов (см. главу 11). Звезды, которые можно увидеть в шаровом скоплении в телескоп, — это, в основном, красные гиганты. В больший телескоп можно уже наблюдать оранжевых и красных карликов главной последовательности. И только с помощью космического телескопа "Хаббл" и других очень мощных инструментов можно различить большее количество более тусклых белых карликов.

Типичное шаровое звездное скопление содержит от сотен тысяч до миллиона и больше звезд, и все они "упакованы" в шаре (отсюда название "шаровое") диаметром 60-100 световых лет. И чем ближе к центру, тем более плотно упакованы звезды (рис. 12.3). Таким образом, шаровое скопление отличается от открытого высокой концентрацией и большим количеством звезд.

Рис. 12.3. Шаровое скопление G1 в галактике Андромеды

Еще одно важное отличие заключается в том, что открытые скопления распределены по галактическому диску, т. е. практически лежат в плоскости, а шаровые скопления находятся в центре Млечного Пути и заполняют сферу, т. е. множество звезд находятся высоко над галактической плоскостью и глубоко под ней. Концентрация этих скоплений тоже возрастает по мере приближения к центру, но многие шаровые скопления, которые легче всего увидеть, находятся значительно выше галактической плоскости или ниже нее.

Вот самые лучшие шаровые скопления для наблюдения в Северном полушарии:

Мессье 13 (M13) в созвездии Геркулеса;

Мессье 15 (M15) в созвездии Пегаса.

И М13, и М15 можно увидеть невооруженным глазом, если небо достаточно темное, но необходимо проверить себя с помощью бинокля или малого телескопа; тогда эти скопления будут видны как размытые пятна, по размеру больше звезд. Чтобы найти эти объекты в небе, используйте звездные диаграммы или атласы (например, Звездный атлас Нортона).

Наблюдатели из Северного полушария обманывались относительно самых лучших шаровых звездных скоплений, потому что, без сомнения, два самых крупных и ярких из них находятся в южном небе:

Омега Центавра в созвездии Центавра;

47 Тукана в созвездии Тукана.

Если смотреть на эти скопления в бинокль, то перед вами предстанет эффектное зрелище. Возможно, ради этого стоит даже совершить путешествие в Южную Америку, Южную Африку, Австралию или другие места Южного полушария, откуда они видны.

ОВ-ассоциации

ОВ-ассоциации (OB associations) — это неплотные группировки десятков звезд спектрального типа О и В , а иногда и более тусклых, холодных звезд (более подробно о спектральных типах говорилось в главе 11). В отличие от открытых и шаровых скоплений, силы гравитации не удерживают вместе эти ассоциации. Со временем находящиеся в них звезды удаляются одна от другой и ассоциации рассеиваются. ОВ-ассоциации расположены рядом с галактической плоскостью.

Многие из ярких молодых звезд в созвездии Ориона (оно находится совсем рядом с галактической плоскостью в юго-западном направлении) — члены ОВ-ассоциации этого созвездия.

Туманности

Туманность — это газо-пылевое облако в космическом пространстве. (Пыль — это микроскопические твердые частицы силикатов, углерода, льда или разнообразных сочетаний этих веществ.) Как я уже говорил в главе 11, одни туманности играют важную роль в процессе формирования звезд, а другие сами остались "продуктом жизнедеятельности" умирающих звезд. Существует несколько разновидностей туманностей, в зависимости от этапа их жизненного цикла.

Зоны Н II (Н II regions) — это туманности, в которых водород находится в ионизированном состоянии, т. е. потерял свой электрон. (У атома водорода один протон и один электрон.) Газ в зоне Н II горячий, ионизированный и светящийся от ультрафиолетового излучения, исходящего от находящихся поблизости звезд спектрального типа О или В . Все крупные и яркие туманности, которые можно увидеть в бинокль, — это зоны Н II , т. е. ионизированного водорода.

Темные туманности (dark nebulae) — это плотные и непрозрачные газопылевые облака, которые не светятся. Водород в них находится в нейтральном состоянии, т. е. он не потерял свой электрон. Зона H I — это туманность, водород в которой находится в нейтральном состоянии; т. е. это просто другое название темных туманностей.

Отражающие туманности (reflection nebulae) состоят из пыли и холодного нейтрального водорода. Они светятся отраженным светом соседних звезд. А если бы этих звезд поблизости не оказалось, то данные объекты были бы темными туманностями.

Гигантские молекулярные облака (giant molecular clouds) — это самые крупные объекты Млечного Пути. Но они темные и холодные, и мы даже не знали бы о их существовании, если бы не данные, полученные с помощью радиотелескопов, которые могут обнаруживать излучения слабых радиоволн от молекул, таких как окись углерода (СО). Как и все остальные туманности, гигантские молекулярные облака, в основном, состоят из водорода, но часто их изучают с помощью компонентов, содержащихся в очень малых количествах, таких как СО. Водород в этих гигантских облаках находится в молекулярной форме (и обозначается Н2), т. е. каждая его молекула содержит два нейтральных атома водорода.

Одно из самых поразительных открытий последних десятилетий в изучении туманностей состояло в том, что яркие зоны Н II, такие как туманность Ориона, — это только маленькие горячие участки на окраинах гигантских молекулярных облаков. На протяжении столетий люди смотрели на туманность Ориона и даже не представляли, что это — не более чем яркий "пупырышек" на огромном невидимом объекте, молекулярном облаке Ориона. Но теперь мы это знаем. Новые звезды рождаются в молекулярных облаках, и когда они становятся достаточно горячими, ионизируют окружающее пространство вокруг себя, превращая его в зону Н II. Если в молекулярном облаке пылевой слой достаточно толстый для того, чтобы преградить путь свету многих или большинства звезд, расположенных за этим облаком (с точки зрения наблюдателя на Земле), то эта часть молекулярного облака называется темной туманностью.

Планетарная туманность (planetary nebulae), как уже упоминалось в главе 11, — это атмосфера старой звезды типа Солнца, которая в предсмертной агонии сбросила свои внешние слои. Более подробно о планетарных туманностях мы поговорим в следующем разделе.

Остатки сверхновой (supernova remnants) — это туманность, образованная из вещества, извергнутого при взрыве массивной звезды (об этом я тоже говорил в главе 11). Более подробно о сверхновых речь пойдет дальше в этой главе.

Зоны Н II, темные туманности, гигантские молекулярные облака и многие отражающие туманности расположены на галактическом диске Млечного Пути или рядом с ним.

Планетарная туманность

Итак, планетарная туманность — это атмосфера старой звезды типа Солнца, которая затем сбросила свои внешние атмосферные слои. Такая туманность ионизирована и светится ультрафиолетовым светом, исходящим от расположенной в ее центре маленькой горячей звезды, т. е. того, что осталось от прежнего "солнца". Эти туманности распространяются в космос и, по мере такого расширения, угасают.

На протяжении десятилетий астрономы считали, что многие или большинство планетарных туманностей имеют приблизительно сферическую форму. Но теперь известно, что большинство их них биполярны, т. е. они состоят из двух круглых долей, выступающих с противоположных сторон от центральной звезды. Некоторые планетарные туманности, которые выглядят сферическими, как, например, Кольцевая туманность (Ring Nebula) из созвездия Лиры (рис. 12.4), на самом деле тоже биполярные. Дело в том, что ось, проходящая через центры этих долей, направлена на Землю, поэтому они и кажутся сферическими, — как гантель, если смотреть на нее с торца. Но, чтобы понять это, астрономам понадобилось много лет. Заметим, что, в отличие от зон Н II, планетарные туманности могут находиться достаточно далеко от галактической плоскости.

Рис. 12.4. Кольцевая туманность в созвездии Лиры

Фотография любезно предоставлена NASA

Галактика-неудачник

В 1950-е годы термином "туманность" называли также галактики, поскольку до 1920-х годов считалось, что галактики за пределами Млечного Пути — это туманности Млечного Пути. Астрономы верили в существование только одной галактики, в которой находится планета Земля, т. е. Млечного Пути.

Потребовалось несколько десятков лет, чтобы в астрономическом языке отразилось изменение понятий и представлений. Авторы астрономических книг совсем недавно перестали называть галактику Андромеды привычным именем — "Туманность Андромеды".

Эдвин П. Хаббл (Edwin P. Hubble), в честь которого назван знаменитый космический телескоп, написал замечательную книгу The Realm of the Nebulae. Она полностью посвящена галактикам, а не туманностям (в том смысле, в каком мы используем этот термин сегодня). Наряду со многими достижениями, Э. Хаббл доказал, что туманность Андромеды — это галактика, полная звезд, а не большое газовое облако. Бывший боксер, он воевал в Первую мировую, курил трубку и, говорят, был груб с другими астрономами обсерватории Маунт-Вилсон. Но его исследования действительно внесли большой вклад в науку.

Любопытная деталь: существуют также протопланетарные туманности (protoplanetary nebulae), в значительной степени изученные астрофизиками. Один тип протопланетарной туманности представляет собой начальный жизненный этап планетарной туманности, т. е. определенную стадию умирания звезды. Другой тип — это порождающее облако системы, состоящей из звезды и ее планет. Конечно, со стороны астрономов не слишком остроумно использовать один и тот же термин для обозначения двух совершенно разных видов объектов, но увы, нет совершенства в этом мире. Видимо, нужен другой Эдвин Хаббл, который бы заставил нас выработать более правильную терминологию.

Остатки сверхновой

Остатки сверхновой на начальном этапе представляют собой вещество, извергнутое при взрыве массивной звезды. Молодые остатки сверхновой состоят почти исключительно из осколков взорвавшейся звезды. Но по мере продвижения по межзвездному пространству газ начинает собирать все на своем пути, как снежный ком. И к тому времени, когда остатки сверхновой станут старыми, т. е. спустя десятки тысяч лет, туманность будет до краев заполнена этим собранным по пути межзвездным газом, и сами осколки взорвавшейся звезды будут составлять незначительную долю общей массы.

Остатки сверхновых обнаружены в галактической плоскости Млечного Пути или рядом с ней.

Наши рекомендации