Биологические препараты, полученные методом генетической инженерии из рекомбинантных штаммов микроорганизмов

Из многих сотен препаратов, полученных методом генетической инженерии, в практику внедрена только часть: интерфероны, интерлейкины, фактор VIII, инсулин, гормон роста, тканевый активатор плазминогена, вакцина против гепатита В, моноклональные антитела для предупреждения отторжения при пересадках почки, диагностические препараты для выявления ВИЧ и др. Это обстоятельство можно объяснить несколькими причинами. Во-первых, длительное время к этим препаратам и рекомбинантным штаммам микроорганизмов относились настороженно, опасаясь, что может произойти неуправляемое распространение экологически опасных рекомбинантных микроорганизмов. Однако в наши дни эти опасения практически сняты. Во-вторых, использование рекомбинантных штаммов продуцентов предусматривает разработку сложных технологических процессов по получению и выделению целевых продуктов. На разработку технологии получения препаратов методом генетической инженерии, доклинические и клинические испытания их обычно затрачивается значительно больше средств, чем на получение штамма. В-третьих, при получении препаратов методом генетической инженерии всегда возникает вопрос об идентичности активной субстанции, вырабатываемой рекомбинантным штаммом-продуцентом, природному веществу, т. е. требуется проведение исследовательских работ, направленных на доказательство идентичности, а также иногда решение дополнительных задач по приданию продукту природного характера.

Таблица 1: Медицинские препараты, разрабатываемые методами современной биотехнологии

Тип препарата Применение
Антикоагулянты и тромболитики Тканевый активатор плазминогена, факторы VIII и IX
Колониестимулирующие факторы (КСФ) Соматомедин С, гранулоцитный КСФ, макрофагальный КСФ
Иммуноцитокины Интерфероны, интерлейкины, фактор некроза опухолей, миелопептиды, пептиды тимуса
Гормоны Гормон роста, инсулин, эритропоэтин
Ферменты Липазы, протеазы
Вакцины Против ВИЧ-инфекции, гепатита В, малярии и др.
Диагностикумы Для выявления ВИЧ-инфекции, гепатита В, сифилиса и др.
Рецепторы Т-4 лимфоцитов (белок СД-4) и др.
Моноклональные антитела (не для диагностических целей) Для иммунотерапии опухолей, предупреждения реакции отторжения
Прочие Триптофан, белок А, альбумин, поведенческие пептиды и др.

Однако метод генетической инженерии относится к числу перспективнейших при получении многих белковых биологических веществ, представляющих ценность для медицины. В области создания биологически активных веществ медицинского назначения с помощью метода генетической инженерии исследования продолжаются на следующем этапе . создаются препараты второго поколения, т. е. аналоги природных веществ, обладающих большей эффективностью действия.

При определении целесообразности и экономичности методов генетической инженерии для получения медицинских или других препаратов по сравнению с традиционными способами учитываются многие обстоятельства, в первую очередь доступность этого метода, экономичность его, качество получаемого препарата, новизна, безопасность проведения работ и др.

Метод генетической инженерии является единственным при получении препаратов, если природный микроорганизм или животные и растительные клетки не культивируются в промышленных условиях. Например, возбудитель сифилиса или малярийный плазмодий практически не растет на искусственных питательных средах. Поэтому для получения диагностических препаратов или вакцин прибегают к клонированию или синтезу генов протективных антигенов, их встраиванию в легко культивируемые бактерии. При выращивании этих рекомбинантных бактерий-реципиентов получают нужные антигены, на основе которых создают диагностический препарат или вакцину. Таким образом, уже производится вакцина против гепатита В. Ген HBs-антигена вируса гепатита встроен в дрожжевую клетку; при выращивании дрожжей образуется HBs-антиген, из которого готовят вакцину.

Метод генетической инженерии предпочтительнее также в том случае, когда микроорганизм высоко патогенен и опасен при промышленном производстве. Например, для получения из ВИЧ диагностических препаратов и вакцин предпочитают не выращивать вирус в больших количествах, а необходимые антигены получают методом генетической инженерии. К настоящему времени практически все основные антигены ВИЧ (р24, gp41, gp120 и др.) получены путем выращивания рекомбинантных штаммов Е. coli или дрожжей, способных продуцировать эти антигены. На основе рекомбинантных белков уже созданы диагностические препараты для обнаружения СПИДа.

Метод генетической инженерии используют в том случае, когда исходное сырье для получения препарата традиционным способом является дефицитным или дорогостоящим. Например, лейкоцитарный α-интерферон получают из лейкоцитов донорской крови человека. Из 1 л крови получают 2-3 дозы высоко-концентрированного интерферона. На курс лечения онкологического больного требуются сотни доз препарата. Следовательно, массовое производство и применение лейкоцитарного интерферона из крови нереально. Производство лейкоцитарного интерферона методом генетической инженерии значительно экономичнее и не требует дефицитного сырья (крови). Его получают путем выращивания рекомбинантных штаммов бактерий (Е. coli, псевдомонад), способных продуцировать интерферон в результате встройки им гена α-интерферона. Из 1 л культуры рекомбинантных бактерий получают 100-150 доз лейкоцитарного интерферона с активностью 106 ME.

Получение природного инсулина - гормона для лечения диабета, основанное на извлечении его из поджелудочных желез крупного рогатого скота и свиней, сдерживается дефицитом сырья. Кроме того, гормон имеет животное происхождение. Разработанный генетической инженерией метод получения человеческого инсулина путем выращивания рекомбинантного штамма Е. coli решил проблему обеспечения больных этим жизненно важным препаратом. Такая же ситуация наблюдается и в отношении гормона роста человека, получаемого из гипофиза умерших людей. Этого гормона не хватало для лечения карликовости, быстрейшего заживления ран и т.д. Генетическая инженерия решила эту проблему: достаточно 1000 л культуры рекомбинантного штамма Е. coli, чтобы получить количество гормона, достаточное для лечения карликовости, например, в такой большой стране, как США.

Большую группу иммуноцитокинов эндогенного происхождения, играющих большую роль в регуляции иммунитета, кооперации иммунокомпетентных клеток и в связи с этим используемых для лечебных и профилактических целей при иммунодефицитах, опухолях, нарушениях работы иммунной системы, получают главным образом методом генетической инженерии, поскольку этот метод эффективнее традиционного. К иммуноцитокинам относят интерлейкины (насчитывают 18 разновидностей: ИЛ-1, ИЛ-2... ИЛ-18), миелопептиды, факторы роста, гормоны вилочковой железы. Все они являются пептидами, вырабатываемыми иммунокомпетентными клетками, и обладают биологическим действием, влияют на пролиферацию, дифференцировку или физиологическую активность иммунокомпетентных и других клеток (Т- и В-лимфоцитов, макрофагов). Иммуноцитокины получают путем культивирования клеток (лимфоцитов, макрофагов и др.) на искусственных питательных средах. Однако процесс этот сложен, продукция иммуноцитокинов незначительна и не имеет практического значения. Поэтому для получения иммуноцитокинов применяют метод генетической инженерии. Уже созданы рекомбинантные штаммы Е. coli и другие штаммы, продуцирующие интерлейкины (ИЛ-1, 2, 6 и др.), фактор некроза опухолей, фактор роста фибробластов и др. Это значительно ускорило процесс внедрения иммуноцитокинов в практику.

Метод генетической инженерии используется для получения принципиально новых продуктов и препаратов, не существующих в природе. Например, только с помощью генетической инженерии можно получить рекомбинантные поливалентные живые вакцины, несущие антигены нескольких микроорганизмов. Получен рекомбинантный штамм вируса оспенной вакцины, продуцирующий HBs-антиген вируса гепатита В, бешенства, клещевого энцефалита. Такие живые вакцины называют векторными.

Метод генетической инженерии позволяет также заменить ' многие методы, основанные на получении продуктов in vivo, на способы получения этих продуктов in vitro. До последнего времени диагностические, лечебные и профилактические сыворотки получали из крови иммунизированных лошадей или вакцинированных людей-доноров. В настоящее время этот дорогой и, непростой способ вытесняется гибридомной техникой получения антител. Эта техника основана на получении клеток-гибридом путем слияния В-лимфоцитов, взятых от иммунизированных животных и миеломных (раковых) клеток. Образующаяся гибридная клетка (гибридома) обладает способностью миеломной клетки быстро размножаться на искусственных питательных средах и продуцировать при этом антитела (так же, как В-лимфоцит) к антигену, использованному для иммунизации.

Гибридомы, продуцирующие антитела, могут выращиваться в больших масштабах в культиваторах или специальных аппаратах. Поскольку образующиеся гибридомой антитела Іпроизошли от одной родоначальной клетки (В-лимфоцита), то они называются моноклональными антителами. Моноклональные антитела широко используются для создания диагностических препаратов, а также в некоторых случаях применяются с лечебной целью (в онкологии).

Многие фармакологические средства до сих пор получают путем переработки лекарственных трав. Для этого необходимо организовать сбор этих трав или выращивать их на плантации. Биотехнология и генетическая инженерия позволяют получать эти же природные фармакологические вещества путем выращивания в промышленных условиях культур клеток лекарственных растений. В настоящее время налажен выпуск таким способом десятков лекарственных средств, среди них женьшень, строфантин и др.

Понятие о гене

Ген (от греч. genos-род, происхождение), участок молекулы ДНК (в неоторых случаях РНК), в котором закодирована информация о биосинтезе одной полипептидной цепи с определенной аминокислотной последовательностью. Ген – единица наследственного материала, обеспечивающая формирование какого-либо признака организма и его передачу в ряду поколений. Контролируют все клеточные процессы на молекулярном уровне, обеспечивая биосинтез белков, в первую очередь ферментов. Если белок состоит из более чем одной полипептидной цепи, синтез каждой из них контролируется самостоятельным геном.

Для гена характерна определенная последовательность нуклеотидов, образующих набор триплетов. Последние определяют порядок расположения аминокислот в молекуле белка. Сам ген не принимает непосредственного участия в его синтезе. ДНК служит лишь матрицей для построения (транскрибирования) молекулы матричной, или информационной, РНК, в которую передается код гена. В рибосомах осуществляется "перевод" кода мРНК в аминокислотную последовательность синтезируемого на них белка (трансляция). Благодаря биологическому действию синтезируемых белков осуществляется экспрессия гена, т.е. развитие определяемого им признака.

Ген функционирует в клетке в составе генной регуляторной системы. В зависимости от выполняемой функции различают структурные гены, кодирующие большое число белков клетки, и регуляторные, ответственные за синтез белков-регуляторов, контролирующих активность структурных генов. Механизм генетического контроля синтеза белка окончательно не выяснен. Предполагают, что у бактерий значительная часть генов объединена в группы, контролирующие отдельные метаболические пути (серии взаимосвязанных обменных реакций) и образующие единые функциональные блоки.

У бактерий гены содержатся в одной хромосоме и автономных генетических элементах - плазмидах и эписомах, представляющих собой замкнутые кольцевые молекулы ДНК. В отличие от плазмид, эписомы могут встраиваться в хромосомы и покидать их. Размер плазмид необычайно широко варьирует. Некоторые из них содержат 1-3 гена, тогда как размеры других составляют 10-20% от величины хромосомы и содержат сотни генов. В плазмидах расположены гены, обеспечивающие устойчивость бактерий к антибиотикам.

Бактериальные гены состоят в среднем из 900-1500 нуклеотидов, расположенных линейно. Молекулярная масса среднего по размеру гена для различных микроорганизмов колеблется в пределах от 0,5*106 до 1*106 .

Термин "ген" впервые предложил В. Иогансен в 1909 для обозначения дискретных наследственных факторов, открытых Г. Менделем в 1865. Значительный прогресс в изучении тонкой структуры и закономерностей функционирования генов связан с развитием методов генетической инженерии, позволяющих выделять индивидуальные гены и получать их в препаративных количествах. Разработка способов расшифровки первичной структуры РНК, а позднее и ДНК, а также познание основных механизмов биосинтеза нуклеиновых кислот в клетке открыли возможность искусственного синтеза генов.

Методы получения генов

Химический синтез

Расшифровав последовательность аминокислот в белке, и используя генетический код, определяют последовательность нуклеотидов ДНК на участке гена и производят его синтез из нуклеотидов при помощи фермента полимераза-1. Таким путем в 1969 г. Корана впервые синтезировал участок молекулы ДНК, кодирующий аланиновую т-РНК, а в 1977 г. Бойер синтезировал ген соматостатина человека, а затем и ген инсулина. В 1977 г. В. Гилбертом, а также Ф. Сэнгером был предложен метод секвенирования, т.е. распознавания последовательности нуклеотидов в фрагментах нуклеиновых кислот. Метод химического синтеза генов оказался трудоемким и малоэффективным. Затем появились быстрые и простые методы синтеза сравнительно длинных олигонуклеотидов с определенной, заранее заданной, последовательностью нуклеотидов. Теперь довольно легко можно синтезировать последовательность до 100 нуклеотидов. Автоматизация этих процессов еще более облегчает и ускоряет синтез.

Рестрикционный метод

Специфические эндонуклеазы – рестриктазы – были открыты в 1953 г. у бактерий. С помощью рестриктаз расщепляют ДНК бактерий другого штамма или клетки-хозяина. К настоящему времени из разных микроорганизмов выделено более тысячи различных рестриктаз; в генетической инженерии используется около 200. Рестриктазы гидролизируют ДНК строго по определенным специфическим последовательностям, называемым сайтами рестрикции. Каждая из рестриктаз узнает свой сайт рестрикции и разрезает ДНК либо внутри сайта, либо в непосредственной близости от него. Обозначение растриктаз складывается из начальных букв латинского названия вида бактерии, из которой выделен фермент, и дополнительного обозначения, т.к. из бактерий одного вида может быть выделено несколько различных рестриктаз: Escherichia coli – Eco R1, Eco RV; Thermus aguaticus – Tag 1. Из нескольких типов рестриктаз в генной инженерии часто используются рестриктазы двух типов, которые узнают определенную последовательность ДНК и гидролизуют ее внутри последовательности сайта рестрикции.

Фрагменты ДНК, имеющие одинаковые «липкие» концы, могут соединяться друг с другом с помощью ДНК-лигазы, при этом сайт рестрикции восстанавливается. Фрагменты с «липкими» концами наиболее удобны для создания рекомбинантных ДНК.

Однако рестриктазы не «выстригают» полностью ген и его нужно либо достраивать химическим путем, либо отщеплять лишние нуклеотидные последовательности.

Ферментативный синтез генов

Ферментативный синтез генов стал возможен после открытия фермента обратной транскриптазы или ДНК-ревертазы (Г. Тёмин, Мизутани, 1970), выделенной из онкогенных вирусов. Ревертазы могут синтезировать комплементарную цепь ДНК (к-ДНК) на РНК-матрице. При помощи ДНК-зонда (одноцепочечная меченая молекула ДНК, комплементарная какому-либо участку и-РНК) находят информационную (матричную) РНК. Практически все эукариотические и-РНК содержат на своем 3' конце последовательность, состоящую из остатков аденина (поли А-последовательность), которая присоединяется к и-РНК в результате сплайсинга. Для начала реакции синтеза ДНК-ревертазе нужна затравка в виде небольшого двухцепочечного отрезка. Эту функцию выполняют короткие олигонуклеотиды из 18-20 тиминовых остатков (поли д-Т), которые соединяются по принципу комплементарности с поли А-последовательностью и-РНК. В результате образуется гибридная и-РНК – к-ДНК молекула, причем на конце у нее будет синтезироваться короткий отрезок двухцепочечной ДНК – шпилька. Шпилька служит затравкой для синтеза второй комплементарной цепи ДНК, осуществляющегося уже ферментом ДНК-полимеразой (см. рис.). Цепь и-РНК гидролизуется РНК-азой, а шпилька (одноцепочечная ДНК) – эндонуклеазой S1. В результате получится двухцепочечная молекула к-ДНК, соответствуюшая структурному гену, с которого транскрибировалась исходная молекула и-РНК. К полученной ДНК присоединяют «липкие» концы для встраивания в плазмиду и размножения гена. Подобная схема была использована для получения генов, кодирующих инсулин, гормона роста, интерферона, альбумина, иммуноглобулинов и др. белков, производство которых уже налажено в промышленных масштабах. Возможно и соединение фрагментов ДНК с «тупыми» концами за счет действия ДНК-лигазы, но эффективность такого «сшивания» на порядок ниже.

Схема синтеза двуцепочечной к-ДНК на м-РНК (и-РНК)

Разработаны методы соединения фрагментов ДНК с «липкими» и «тупыми» концами, что позволяет создавать рекомбинантные молекулы ДНК и в тех случаях, если даже эти фрагменты были получены с использованием различных рестриктаз. Под рекомбинантными ДНК понимают ДНК, образованные объединением in vitro двух и более фрагментов ДНК, выделенных из различных биологических источников.

Наши рекомендации