Прямой поперечный изгиб
При изгибе стержни подвергаются воздействию поперечной силы или изгибающего момента. Изгиб называется чистым, если действует только изгибающий момент, и поперечным, если действует нагрузка, перпендикулярная оси стержня. Брус (стержень), работающий на изгиб, обычно называют балкой. Балки являются наиболее часто встречающимися элементами сооружений и машин, воспринимающими нагрузки от других элементов конструкций и, передающими их тем частям, которые поддерживают балку (чаще всего опорам).
В строительных сооружениях и машиностроительных конструкциях чаше всего можно встретить следующие случаи крепления балок: консольные - с одним защемленным концом (с жесткой заделкой), двухопорные - с одной шарнирно-неподвижной опорой и с одной шарнирно-подвижной опорой и многоопорные балки. Если опорные реакции могут быть найдены из одних уравнений статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число уравнений статики, то такие балки называют статически неопределимыми. Для определения реакций в таких балках приходится составлять дополнительные уравнения - уравнения перемещений. При плоском поперечном изгибе все внешние нагрузки перпендикулярны к оси балки.
Определение внутренних силовых факторов, действующих в поперечных сечениях балки, следует начинать с определения опорных реакций. После этого используем метод сечений, мысленно рассекаем, балку на две части и рассматриваем равновесие одной части. Взаимодействие частей балки заменяем внутренними факторами: изгибающим моментом и поперечной силой.
Поперечная сила в сечении равна алгебраической сумме проекций всех сил, а изгибающий момент равен алгебраической сумме моментов всех сил, расположенных по одну сторону от сечения. Знаки действующих сил и моментов следует определять в соответствии с принятыми правилами. Необходимо научиться правильно определять равнодействующую силу и изгибающий момент от равномерно распределенной по длине балки нагрузки.
Следует иметь в виду, что при определении напряжений, возникающих при изгибе, принимают следующие допущения: сечения плоские до изгиба остаются плоскими и после изгиба (гипотеза плоских сечений); продольные соседние волокна не давят одно на другое; зависимость между напряжениями и деформациями линейная.
При изучении изгиба следует обратить внимание на неравномерность распределения нормальных напряжений в поперечном сечении балки. Нормальные напряжения изменяются по высоте поперечного сечения пропорционально расстоянию от нейтральной оси. Следует уметь определять напряжения изгиба, которые зависят от величины действующего изгибающего момента МИ и момента сопротивления сечения при изгибе WО (осевой момент сопротивления сечения).
Условие прочности при изгибе: σ = МИ / WО £ [σ]. Значение WО зависит от размеров, формы и расположения поперечного сечения относительно оси.
Наличие поперечной силы, действующей на балку, связано с возникновением касательных напряжений в поперечных сечениях, а по закону парности касательных напряжений - и в продольных сечениях. Касательные напряжения определяют по формуле Д. И. Журавского.
Поперечная сила сдвигает рассматриваемое сечение относительно смежного. Изгибающий момент, складывающийся из элементарных нормальных усилий, возникающих в поперечном сечении балки, поворачивает сечение относительно смежного, чем и обусловлено искривление оси балки, т. е. ее изгиб.
Когда балка испытывает чистый изгиб, то по всей длине балки или на отдельном ее участке в каждом сечении действует изгибающий момент постоянной величины, а поперечная сила в любом сечении данного участка равна нулю. При этом в поперечных сечениях балки возникают только нормальные напряжения.
Для того чтобы глубже разобраться в физических явлениях изгиба и в методике решения задач при расчете на прочность и жесткость, необходимо хорошо усвоить геометрические характеристики плоских сечений, а именно: статические моменты сечений, моменты инерции сечений простейшей формы и сложных сечений, определение центра тяжести фигур, главные моменты инерции сечений и главные оси инерции, центробежный момент инерции, изменение моментов инерции при повороте осей, теоремы о переносе осей.
При изучении этого раздела следует научиться правильно строить эпюры изгибающих моментов и поперечных сил, определять опасные сечения и действующие в них напряжения. Помимо определения напряжений следует научиться определять перемещения (прогибы балки) при изгибе. Для этого используется дифференциальное уравнение изогнутой оси балки (упругой линии), записанное в общем виде.
Для определения прогибов проводится интегрирование уравнения упругой линии. При этом следует правильно определять постоянные интегрирования С и D исходя из условий опирания балки (граничных условий). Зная величины С и D, можно определить угол поворота и прогиб любого сечения балки. Изучение сложного сопротивления обычно начинают с косого изгиба.
Явление косого изгиба особенно опасно для сечений со значительно отличающимися друг от друга главными моментами инерции; балки с таким сечением хорошо работают на изгиб в плоскости наибольшей жесткости, но даже при небольших углах наклона плоскости внешних сил к плоскости наибольшей жесткости в балках возникают значительные дополнительные напряжения и деформации. Для балки круглого сечения косой изгиб невозможен, так как все центральные оси такого сечения являются главными и нейтральный слой всегда будет перпендикулярен плоскости внешних сил. Косой изгиб невозможен и для балки квадратного сечения.
При определении напряжений в случае внецентренного растяжения или сжатия необходимо знать положение главных центральных осей сечения; именно от этих осей отсчитывают расстояния точки приложения силы и точки, в которой определяют напряжения.
Приложенная эксцентрично сжимающая сила может вызвать в поперечном сечении стержня растягивающие напряжения. В связи с этим внецентренное сжатие является особенно опасным для стержней из хрупких материалов, которые слабо сопротивляются растягивающим усилиям.
В заключение следует изучить случай сложного сопротивления, когда тело испытывает одновременно несколько деформаций: например, изгиб совместно с кручением, растяжение-сжатие совместно с изгибом и т. д. При этом следует иметь в виду, что изгибающие моменты, действующие в различных плоскостях, могут складываться как векторы.