При построении сетевого графика необходимо соблюдать ряд правил
1. В сетевой модели не должно быть «тупиковых» событий, т.е. событий, из которых не выходит ни одна работа, за исключением завершающего события (см.рис.3а). Здесь либо работа (2, 3) не нужна и ее необходимо аннулировать, либо не замечена необходимость определенной работы, следующей за событием 3 для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.
2. В сетевом графике не должно быть «хвостовых» событий (кроме исходного), которым не предшествует хотя бы одна работа (событие 3 – на рис.3б). Здесь работы, предшествующие событию 3, не предусмотрены. Поэтому событие 3 не может свершиться, а следовательно, не может быть выполнена и следующая за ним работа (3, 5). Обнаружив в сети такие события, необходимо определить исполнителей предшествующих им работ и включить эти работы в сеть.
3. В сети не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими (см.рис.3в).
рис3
|
|
|
|
| | ||||||
|
|
|
|
|
|
з)
и) к)
Представим себе, что в сетевом графике, изображенном на рисунке, работы Б (построение математической модели) и Д (построение и отладка программы для ЭВМ) при формулировании первоначального списка работ мы объединили бы в одну работу Б`. Тогда получили бы сетевой график, представленный на рисунке. Событие 2` означает, что можно переходить к работе Б, которую нельзя выполнить до выбора метода расчета (работа 1`), а выбор метода расчета нельзя начинать до окончание построения модели (событие 3`). Другими словами, в сети образовался простейший контур .
При возникновении контура (а в сложных сетях, т.е. в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путем пересмотра состава работ добиться его устранения. Так, в нашем примере потребовалось бы разделение работы Б` на Б и Д.
4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой.
Нарушение этого условия происходит при изображении параллельно выполняемых работ (см.рис.3д). Если эти работы так и оставить, то произойдет путаница из-за того, что две различные работы будут иметь одно и то же обозначение (1, 2); обычно принято под (i, j) понимать работу, связывающую i-е событие с j-м событием. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.
В этом случае рекомендуется ввести фиктивное событие (событие 2`, см.рис.3е) и фиктивную работу (работа 2`, 2), при этом одна из параллельных работ (1, 2`) замыкается на это фиктивное событие. Фиктивные работы изображаются на графике пунктирными линиями.
5. В сети рекомендуется иметь одно исходной и одно завершающее событие. Если в составленной сети это не так (см.рис.3ж), то добиться желаемого можно путем введения фиктивных событий и работ, как это показано на рисунке(3з).
Фиктивные работы и события необходимо вводить и в ряде других случаев. Один из них – отражение зависимости событий, не связанных с реальными работами. Например, работы А и Б (см.рис.3и) могут выполняться независимо друг от друга, но по условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фиктивной работы С.
Другой случай – неполная зависимость работ. Например, работа С требует для своего начала завершения работ А и Б, но работа Д связана только с работой Б, а от работы А не зависит. Тогда требуется введение фиктивной работы Ф и фиктивного события 3`, как показано на рисунке(3к).
Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяженностью во времени.