Интервальные оценки параметров нормального

Закона распределения

Часто предпочтительнее оказываются так называемые интервальные оценки, указывающие интервал, в котором лежит истинное значение измеряемой величины, а именно

Интервальные оценки параметров нормального - student2.ru

или Интервальные оценки параметров нормального - student2.ru ± Интервальные оценки параметров нормального - student2.ru

Интервал [ Интервальные оценки параметров нормального - student2.ru ], или [- Интервальные оценки параметров нормального - student2.ru ], называется доверительным интервалом в первом случае результата измерения, во втором - случайной погрешности. Так как случайная погрешность, распределенная по нормальному закону, может принимать любые, в том числе и сколь угодно большие значения, то мы не можем наверняка сказать, что она лежит в указанном интервале, а может лишь говорить о вероятности p попаданий случайной погрешности в заданный интервал.

Зная закон распределения погрешностей, эту вероятность можно подсчитать. Так, в случае справедливости нормального закона

p = Интервальные оценки параметров нормального - student2.ru .

Однако этот интервал в элементарных функциях не берется. Его можно вычислить в произвольных пределах лишь методом численного интегрирования, а это довольно сложная - если не применять ЭВМ - задача.

- 16 -

К счастью, эта задача решена и составлены таблицы, которыми нужно уметь пользоваться. Однако, так как интеграл зависит от двух параметров Интервальные оценки параметров нормального - student2.ru и Интервальные оценки параметров нормального - student2.ru , а они в разных жизненных ситуациях могут принимать различные значения, таблиц пришлось бы составлять бесконечное множество. Чтобы этого не делать, договорились вводить стандартизованную переменную

Интервальные оценки параметров нормального - student2.ru

В этом случае

Интервальные оценки параметров нормального - student2.ru Интервальные оценки параметров нормального - student2.ru

и необходимо составить всего одну таблицу. Это есть последняя строка табл.1 на с. 41 ( ГОСТ 8.207-76. Прил.2 ).

Найденная вероятность p носит название доверительной вероятности.

Однако на практике часто поступают наоборот: задаются значением доверительной вероятности p , а по таблицам находят Интервальные оценки параметров нормального - student2.ru и определяют полуширину доверительного интервала .

ГОСТ 8.207-76 рекомендует для технических измерений, если на то нет каких-либо особых причин, брать p = 0,95 или p = 95%. Из табл. 1 видно, что в этом случае Интервальные оценки параметров нормального - student2.ru = 1,960.

Примечание. В особых случаях, когда речь идет о жизни и здоровье людей, а также об охране окружающей среды, выбирается более высокое значение доверительной вероятности p = О,99 или даже p = 0,999.

Входящая в нормальный закон распределения Интервальные оценки параметров нормального - student2.ru носит название генерального среднего квадратичного отклонения. Можно показать, что

Интервальные оценки параметров нормального - student2.ru .

Чаще всего мы Интервальные оценки параметров нормального - student2.ru не знаем, так как проводим конечное число наблюдений, и часто N порядка 10.

Оказывается, что если случайная погрешность подчиняется нормальному закону распределения, то и в этом случае,

- 17 -

используя Интервальные оценки параметров нормального - student2.ru S Интервальные оценки параметров нормального - student2.ru вместо Интервальные оценки параметров нормального - student2.ru , можно подсчитать доверительную вероятность p . Соответствующую формулу вывел английский математик В. Госсет, опубликовавший свои труды под псевдонимом Стьюдент (Student - студент).

Мы не будем приводить эту еще более сложную формулу, для записи которой требуется вывести понятие гамма-функций. Отметим только, что в этом случае также составлены таблицы, связывающие между собой доверительную вероятность p , число измерений N или число степеней свободы n (в нашем случае n = N - 1) и стандартизованную переменную t , называемую коэффициентом Стьюдента,

t = Интервальные оценки параметров нормального - student2.ru .

Пример соответствующей таблицы - табл. 1 ( см. также ГОСТ 8.207-76. Прил.2).

Обычно задаются доверительной вероятностью p и, зная N , по таблице коэффициентов Стьюдента находят t . Зная t , находят доверительный интервал в единицах измерения по формуле

Интервальные оценки параметров нормального - student2.ru или Интервальные оценки параметров нормального - student2.ru .

Наши рекомендации