Задачи для самостоятельного решения. 4.1.Из полной колоды карт (52 карты) вынимают одновременно четыре карты
4.1.Из полной колоды карт (52 карты) вынимают одновременно четыре карты. Рассмотрим события: A – среди вынутых карт хотя бы одна бубновая, B – среди вынутых карт хотя бы одна червонная. Найти вероятность события C = A + B.
4.2.При одном цикле обзора радиолокационной станции, следящей за космическим объектом, объект обнаруживается с вероятностью p. Обнаружение объекта в каждом цикле происходит независимо от других. Найти вероятность того, что при n – циклах объект будет обнаружен.
4.3.32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово “Москва”.
4.4.Вероятность выхода изделия из строя при эксплуатации сроком до одного года равна 0,13, а при эксплуатации сроком до 3 лет – 0,36. Найти вероятность выхода изделия из строя при эксплуатации сроком от 1 года до 3 лет.
4.5.В ящике находится 3 белых и 4 черных шара. Из него последовательно вынимают два шара. Обозначая события = {первый шар белый}, = {второй шар белый}, B = {хотя бы один из вынутых шаров белый}, вычислить условные вероятности: , .
4.6.Дана популяция плодовой мушки с двумя мутациями: 25 % особей имеют мутацию крыльев, 15 % - мутацию глаз и 10 % - обе мутации. Выбирают наудачу одну муху. 1) Если у нее оказывается мутация крыльев, то какова вероятность того, что у нее есть и мутация глаз? 2) Если у нее оказывается мутация глаз, то какова вероятность того, что у нее мутация крыльев?
4.7.В группе 25 % студентов имеют темный цвет волос, 15 % - голубые глаза, 10 % - темный цвет волос и голубые глаза. Преподаватель наугад вызывает к доске одного студента. Какова вероятность того, что у студента есть хотя бы темные волосы или хотя бы голубые глаза?
4.8.Бросают две игральные кости. Какова вероятность появления хотя бы одной шестерки?
4.9.Ведется стрельба по самолету. Уязвимы два двигателя и кабина пилота. Чтобы вывести из строя самолет достаточно поразить оба двигателя или кабину пилота. Вероятность поражения первого двигателя равна , второго двигателя , кабины самолета . Найти вероятность поражения самолета, если его агрегаты поражаются независимо друг от друга.
4.10.В магазине продаются 10 телевизоров, 3 из них имеют дефекты. Какова вероятность того, что посетитель купит телевизор, если для выбора телевизора без дефекта понадобится не более трех попыток.
4.11.В урне находятся 3 белых, 4 желтых и 2 черных шара. Из нее наугад вынимают (без возвращения) один за другим по одному шару. Какова вероятность того, что белый шар появится раньше желтого.
4.12.Два стрелка по очереди стреляют в мишень. Если не попадает один, то начинает стрелять другой. Найти вероятность того, что после трех выстрелов в мишени будет две пробоины, сели вероятность попадания в мишень для первого стрелка, начинающего стрельбу – 0,7; для второго – 0,8.
4.13.Студент может добраться до института или автобусом, который ходит через каждые 20 мин., или троллейбусом, который ходит через каждые 10 мин. Найти вероятность того, что студент, подошедший к остановке, уедет в течение ближайших 15 мин.?
4.14.В группе 8 человек, говорящих только на немецком языке, 6 человек – только на финском. Какова вероятность того, что из двух выбранных наудачу людей оба говорят на одном языке?
4.15.Вероятность обнаружения туберкулезного заболевания при одной рентгеноскопии . Чему равна вероятность, что заболевание будет раскрыто при трех рентгеноскопиях?
4.16.Один студент выучил 20 из 25 вопросов программы, а второй – только 15. Каждому из них задают по одному вопросу. Найти вероятность того, что правильно ответят: а) оба студента; б) только первый студент; в) только один из них; г) хотя бы один из студентов.
4.17.Достаточным условием сдачи коллоквиума является ответ на один из двух вопросов, предлагаемых преподавателем студенту. Студент не знает ответов на 8 вопросов из 40 вопросов, которые могут быть предложены. Какова вероятность, что студент сдаст коллоквиум?
4.18.Прибор, работающий в течение времени t, состоит из трех узлов, каждый из которых, независимо от других, может в течение времени t отказать. Отказ хотя бы одного узла приводит к отказу прибора в целом. Вероятность безотказной работы первого узла равна 0,7, второго – 0,8, третьего – 0,9. Найти вероятность безотказной работы прибора в целом.
4.19.Электрическая цепь состоит из двух последовательно соединенных элементов. Различные элементы цепи выходят из строя независимо друг от друга. Вероятности выхода из строя элементов соответственно равны , . Определить вероятность перерыва питания.
4.20.Разыскивая определенную книгу, студент обходит три библиотеки. Вероятность того, что книга есть в каждой из трех библиотек, равна , а вероятность того, что имеющаяся книга не выдана, равна для каждой библиотеки. Какова вероятность, что студент достанет книгу в одной из библиотек?
4.21.Вероятности того, что каждый из трех друзей придет в условленное место, соответственно равны: , , . Определить вероятность того, что встреча состоится, если для этого достаточно явиться двум из трех друзей.
4.22.Вероятности своевременного выполнения задания тремя независимо работающими предприятиями соответственно равны 0,5; 0,6; 0,7. Найти вероятность своевременного выполнения задания хотя бы одним предприятием.
4.23.Студент знает 30 из 40 вопросов программы. Экзаменатор задает ему вопросы до тех пор, пока не обнаружит пробел в знаниях студента. Найти вероятность того, что будут заданы: а) два вопроса; б) более двух вопросов; в) менее пяти вопросов.
4.24.Покупатель ищет необходимую ему вещь, обходя три магазина. Вероятность наличия ее в каждом магазине 0,2. Что вероятнее – найдет он искомую вещь или нет?
4.25.Группе студентов для прохождения производственной практики выделено 30 мест: 15 – в Туле, 8 – во Владимире, 7 – в Калуге. Какова вероятность того, что студент и студентка, которые в скором времени собираются справить свадьбу, будут посланы для прохождения практики в один и тот же город, если декан ничего не знает об их “семейных делах”?
4.26.Студент разыскивает нужную ему формулу в 3-х справочниках. Вероятность того, что формула содержится в первом, во втором, в третьем справочниках равна соответственно 0,6; 0,7; 0,8. Найти вероятность того, что эта формула содержится не менее, чем в двух справочниках.
4.27.Вероятность своевременного выполнения студентом контрольной работы по каждой из трех дисциплин равна соответственно 0,6; 0,5; 0,8. Найти вероятность своевременного выполнения контрольной работы студентом: а) по двум дисциплинам; б) хотя бы по двум дисциплинам.
4.28.Из букв разрезной азбуки составлено слово “статистика”. Какова вероятность того, что, перемешав буквы и укладывая их в ряд по одной (наудачу), получим слово: а) тиски, б) киска, в) кит, г) статистика.
4.29.Три орудия стреляют в цель независимо друг от друга. Вероятность попадания в цель каждого равна 0,7. Найти вероятность попадания в цель: а) только одного из орудий; б) хотя бы одного.
4.30.Рабочий обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что за смену первый станок не потребует внимания рабочего, равна 0,9, второй – 0,8, третий – 0,75. Найти вероятность того, что за смену: а) только один станок потребует внимания; б) хотя бы один станок потребует внимания; в) только третий станок потребует внимания рабочего.