Дифференциальные уравнения второго порядка
- Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .
ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.
Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 иk 2 = 0. Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид
Подробное описание теории и разобранные решения примеров и задач смотрите в разделе линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .
Общее решение ЛНДУ второго порядка с постоянными коэффициентами yищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x), стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.
В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем
Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .
Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.
Общее решение ЛОДУ на некотором отрезке [a; b]представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .
Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:
Однако, далеко не всегда частные решения представляются в таком виде.
Примером ЛОДУ является .
Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.
В качестве примера ЛНДУ можно привести .
Теорию и решение примеров смотрите в разделе линейные дифференциальные уравнения второго порядка.
К началу страницы