Виды динамических рядов
- моментный ряд отражает значения показателей на определенный момент времени
- интервальный ряд содержит значения показателей за определенные периоды времени. В интервальном ряду уровни можно суммировать, получая накопленные итоги.
Цели анализа динамических рядов (анализа изменений во времени):
-Прогнозирование тенденций, предсказание значений;
-Оценка эффективности существующих методов управления, оценка текущего состояния;
-Исследование социально-экономических явлений.
14.2.
14.3 Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.
а) Метод усреднения по двум половинам ряда: ряд делится на две части. Рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда.
б) Метод укрупнения интервалов: производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.
в) Метод скользящего среднего: основан на расчете средних уровней ряда за определенный период, для характеристики тенденции развития исследуемой статистической совокупности.
и т.д.
Скользящее среднее при усреднении за год – тренд * цикличность * сезонность.
Тренд - устойчивое систематическое изменение процесса в течение продолжительного времени.
14.4. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.
-при равномерном развитии — линейная функция: Yt = b0 + b1t;
-при росте с ускорением: парабола второго порядка: Yt = b0 + b1t + b2t2; кубическая парабола: Yt = b0 + b1t + b2t2 + b3t3;
-при постоянных темпах роста — показательная функция: Yt = b0b1t;
-при снижении с замедлением — гиперболическая функция: Yt = b0 + b1/t.
14.5. Модель, которая статистически описывает связи значений одного и того же показателя в различные моменты времени Y (t) = f (y(t-1)). Авторегрессия часто используется в качестве линейной модели для прогнозирования. В общем виде она описывается выражением
,
где n - число независимых переменных с коэффициентом dj для каждой xj, k - число задержек (лагов) для зависимой переменной y. Тогда общее число параметров модели будет k+n. Задача заключается в оценке параметров b и d. Таким образом, чем длиннее задержка, тем больше параметров авторегрессионной модели требуется оценить.
14.6. 1). MAS – ср. абс. отклонение. . 2). MSE – среднеквадратич. ошибка . 3). MAPE – ср. ошибка аппроксимации (5-7%) – хорошее ур-ие тренда. Средне абсолютная процентная ошибка. . Эти критерии д. иметь мин. знач-ие, ориентирующее на лучшее ур-ие. В кач-ве критериев м. использ-ть: 1. макс. знач-ие критерия Фишера F→max. 2. макс. знач-ие коэф-та детерминации . Выбранное на основе критериев ур-ие тренда не всегда м. признать моделью тренда, пригодной для погнозирования. Необходимо, чтобы стат. значимы были параметры ур-ия тренда (оценивается по t – статистике) и стат. значимо было ур-ие в целом (F – критерий): . Важнейшим критерием оценки кач-ва трендовой модели явл-ся оценка автокорр-ции в остатках. . - остаток. Автокорр-ция – завис-ть остатков периода t от остатков предшеств. непосредственно данному периода или отделённого но опред. интервал, называемый лагом. Наличие автокорр-ции в остатках говорит о сохранении тенденции в остатках, т.е. построенная трендовая модель не полностью описывает основную тенденцию ряда.
14.7. Индекс сезонности – процентное отношение средней величины из фактических уровней одноименных месяцев к средней величине из выровненных уровней одноименных месяцев (минимум 3 года).
Индекс сезонности = Среднее значение (данные/скользящее среднее) за сезон
Значение с поправкой на сезон = данные / индекс сезонности.
Прогноз = Тренд * Индекс сезонности.
14.8. Базисные показатели характеризуют итоговый результат всех изменений в уровнях ряда от периода базисного уровня до данного (i-го) периода.
Цепные показатели характеризуют интенсивность изменения уровня от одного периода к другому в пределах промежутка времени исследования.
выражает абсолютную скорость изменения ряда динамики, определяется как разность между данным уровнем и уровнем, принятым за базу сравнения.