Однофакторный дисперсионный анализ для несвязанных выборок

Дисперсионный анализ

Дисперсионный анализ, предложенный Р. Фишером, является статистическим методом, предназначенным для выявления влияния ряда отдельных факторов на результаты экспериментов.

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные), а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.

Сущность дисперсионного анализа заключается в расчлене­нии общей дисперсии изучаемого признака на отдельные компо­ненты, обусловленные влиянием конкретных факторов, и про­верке гипотез о значимости влияния этих факторов на исследуе­мый признак. Сравнивая компоненты дисперсии друг с другом посредством F — критерия Фишера, можно определить, какая доля общей вариативности результативного признака обусловле­на действием регулируемых факторов.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок, которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых фак­торов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты экспери­мента), двухфакторным (при изучении влияния двух факторов) и многофакторным(позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).

Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным. (Суходольский Г.В., 1972; Шеффе Г., 1980).

Однофакторный дисперсионный анализ для несвязанных выборок

Изучается действие только одной переменной (фактора) на исследуемый признак. Исследователя интересует вопрос, как изменяется определенный признак в разных условиях действия переменной (фактора). Например, как изменяется время решения задачи при разных условиях мотивации испытуемых (низкой, средней, высокой мотивации) или при разных способах предъявления задачи (устно, письменно или в виде текста с графиками и иллюстрациями), в разных условиях работы с задачей (в одиночестве, в комнате с преподавателем, в классе). В первом случае фактором является мотивация, во втором – степень наглядности, в третьем – фактор публичности.[1][1]

В данном варианте метода влиянию каждой из градаций подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех.

Пример 1.Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в табл. 1.

Таблица 1. Количество воспроизведенных слов (по J. Greene, M D'Olivera, 1989, p. 99)

№ испытуемого Группа 1 низкая скорость Группа 2 средняя скорость Группа 3 высокая скорость
суммы
средние 7,17 6,17 4,00
Общая сумма    

Дисперсионный однофакторный анализ позволяет проверить гипотезы:

H0: различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы

H1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы.

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок:

1. подсчитаем SSфакт - вариативность признака, обусловленную действи­ем исследуемого фактора. Часто встречающееся обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках (см., на­пример: Гласс Дж., Стенли Дж., 1976).

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru , (1)

где Тс – сумма индивидуальных значений по каждому из условий. Для нашего примера 43, 37, 24 (см. табл. 1);

с – количество условий (градаций) фактора (=3);

n – количество испытуемых в каждой группе (=6);

N – общее количество индивидуальных значений (=18);

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru - квадрат общей суммы индивидуальных значений (=1042=10816)

Отметим разницу между Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru , в которой все индивидуальные значения сначала возводятся в квадрат, а потом суммируются, и Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru , где индивидуальные значения сначала суммируются для получения об­щей суммы, а потом уже эта сумма возводится в квадрат.

По формуле (1) рассчитав фактическую вариативность признака, получаем:

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru

2. подсчитаем SSобщ – общую вариативность признака:

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru (2)

3. подсчитаем случайную (остаточную) величину SSсл, обусловленную неучтенными факторами:

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru (3)

4. число степеней свободыравно:

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru =3-1=2 (4)

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru

5. «средний квадрат»или математическое ожидание суммы квадратов,усредненная величина соответствующих сумм квадратов SS равна:

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru(5)

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru

6. значение статистики критерия Fэмп рассчитаем по формуле:

Однофакторный дисперсионный анализ для несвязанных выборок - student2.ru (6)

Для нашего примера имеем: Fэмп=15,72/2,11=7,45

7. определим Fкрит по статистическим таблицам Приложения 3 для df1=k1=2 и df2=k2=15 табличное значение статистики равно 3,68

8. если Fэмп< Fкрит, то нулевая гипотеза принимается, в противном случае принимается альтернативная гипотеза. Для нашего примера Fэмп > Fкрит (7.45>3.68), следовательно принимается альтернативная гипотеза.

Вывод: различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (р<0,05). Т.о. скорость предъявления слов влияет на объем их воспроизведения.

Наши рекомендации