Лекция 1. Матрицы и определители
Самарский финансово-экономический колледж
(Самарский филиал Финуниверситета)
КОНСПЕКТ ЛЕКЦИЙ
ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА»
для специальности
38.02.01 «Экономика и бухгалтерский учет» (по отраслям)
(углубленная подготовка)
Самара
2014
ОДОБРЕНО предметной (цикловой) комиссией социально-экономических дисциплин Протокол №_____ от «____» ___________20___ г. Председатель ___________________(Г.В. Арефьева) | Составлено в соответствии с Государственными требованиями к минимуму содержания и уровню подготовки выпускников по специальности 38.02.01 «Экономика и бухгалтерский учет» Заместитель директора по учебной работе _(В.П.Бланк) |
Оглавление
Лекция 1. Матрицы и определители. 5
Лекция 2. Основные понятия и определения: общий вид системы линейных уравнений (СЛУ) с 3-я переменными. Совместные определенные, совместные неопределенные, несовместные СЛУ. 18
Лекция 3. Решение СЛУ по формулам Крамера. 25
Лекция 4. Область определения и область значений функции. Способы задания функции. Свойства функции. Основные элементарные функции, их свойства и графики. 28
Лекция 5. Числовая последовательность и ее предел. Предел функции на бесконечности и в точке. Основные теоремы о пределах. Первый и второй замечательные пределы. 32
Лекция 6. Непрерывность функции в точке и на промежутке. Точки разрыва первого и второго рода. 42
Лекция 7. Определение производной. Геометрический смысл производной. Механический смысл производной. Производные основных элементарных функций. 49
Лекция 8. Исследование функции с помощью производной: интервалы монотонности и экстремумы функции. Асимптоты. Исследование функций и построение их графиков. 61
Лекция 9. Первообразная и неопределенный интеграл. Основные свойства неопределенного интеграла. Таблица интегралов. Методы интегрирования: непосредственное интегрирование, метод разложения, метод замены переменной. 75
Лекция 10. Задача о площади криволинейной трапеции. Понятие определенного интеграла. Свойства определенного интеграла. Формула Ньютона- Лейбница. Вычисление определенного интеграла. Вычисление площади плоских фигур. 87
Лекция 11. Определение комплексного числа. Арифметические операции над комплексными числами, записанными в алгебраической форме. Геометрическая интерпретация комплексных чисел. Модуль и аргументы комплексного числа. 99
Лекция 12. Элементы комбинаторного анализа: размещения, перестановки, сочетания. Формула Ньютона. Случайные события. Вероятность события. Простейшие свойства вероятности. 108
Лекция 13. Задачи математической статистики. Выборка. Вариационный ряд. 116
Лекция 14. Предмет дискретной математики. Место и роль дискретной математики в системе математических наук и в решении задач, связанных с обеспечением информационной безопасности. 124
Литература. 131
Лекция 1. Матрицы и определители.
Опр. Матрицей размера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.
А =
Основные действия над матрицами.
Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.
Опр. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.
Опр. Матрица вида:
= E,
называется единичной матрицей.
Опр. Если amn = anm , то матрица называется симметрической.
Пример. - симметрическая матрица
Опр. Квадратная матрица вида называется диагональной матрицей.
Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Таким образом, возможно определить операции сложения и вычитания матриц:
Опр. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.
cij = aij ± bij
С = А + В = В + А.
Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.
a (А+В) =aА ± aВ
А(a±b) = aА ± bА
Пример. Даны матрицы А = ; B = , найти 2А + В.
2А = , 2А + В = .
Операция умножения матриц.
Опр: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:
A×B = C;
.
Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.
Свойства операции умножения матриц.
1)Умножение матриц не коммутативно, т.е. АВ ¹ ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.
Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.
Перестановочными могут быть только квадратные матрицы одного и того же порядка.
А×Е = Е×А = А
Очевидно, что для любых матриц выполняются следующее свойство:
A×O = O; O×A = O,
где О – нулевая матрица.
2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:
(АВ)С=А(ВС).
3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:
А(В + С) = АВ + АС
(А + В)С = АС + ВС.
4) Если произведение АВ определено, то для любого числа a верно соотношение:
a(AB) = (aA)B = A(aB).
5) Если определено произведение АВ , то определено произведение ВТАТ и выполняется равенство:
(АВ)Т = ВТАТ, где
индексом Т обозначается транспонированная матрица.
6) Заметим также, что для любых квадратных матриц det (AB) = detA×detB.
Что такое det будет рассмотрено ниже.
Опр. Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.
А = ; В = АТ= ;
другими словами, bji = aij.
В качестве следствия из предыдущего свойства (5) можно записать, что:
(ABC)T = CTBTAT,
при условии, что определено произведение матриц АВС.
Пример. Даны матрицы А = , В = , С = и число a = 2. Найти АТВ+aС.
AT = ; ATB = × = =
aC = ; АТВ+aС = + = .
Пример. Найти произведение матриц А = и В = .
АВ = × = .
ВА = × = 2×1 + 4×4 + 1×3 = 2 + 16 + 3 = 21.
Пример. Найти произведение матриц А= , В =
АВ = × = = .
Определители (детерминанты).
Опр. Определителем квадратной матрицы А= называется число, которое может быть вычислено по элементам матрицы по формуле:
det A = , где (1)
М1к – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.
Формула (1) позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:
det A = (2)
Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:
detA = , i = 1,2,…,n. (3)
Очевидно, что различные матрицы могут иметь одинаковые определители.
Определитель единичной матрицы равен 1.
Для указанной матрицы А число М1к называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.
Опр. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.
Свойство1. Важным свойством определителей является следующее соотношение: det A = det AT;
Свойство 2. det ( A ± B) = det A ± det B.
Свойство 3. det (AB) = detA×detB
Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.
Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.
Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.
Опр: Столбцы (строки) матрицы называются линейно зависимыми, если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.
Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)
Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.
Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d1 ± d2 , e = e1 ± e2 , f = f1 ± f2 , то верно:
Пример. Вычислить определитель матрицы А =
= -5 + 18 + 6 = 19.
Пример:. Даны матрицы А = , В = . Найти det (AB).
1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13; det (AB) = det A ×det B = -26.
2- й способ: AB = , det (AB) = 7×18 - 8×19 = 126 – 152 = -26.
Элементарные преобразования.
Опр. Элементарными преобразованиями матрицы назовем следующие преобразования:
1) умножение строки на число, отличное от нуля;
2) прибавление к одной строке другой строки;
3) перестановка строк;
4) вычеркивание (удаление) одной из одинаковых строк (столбцов);
5) транспонирование;
Те же операции, применяемые для столбцов, также называются элементарными преобразованиями.
С помощью элементарных преобразований можно к какой-либо строке или столбцу прибавить линейную комбинацию остальных строк ( столбцов ).
Миноры.
Выше было использовано понятие дополнительного минора матрицы. Дадим определение минора матрицы.
Опр. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.
Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.
Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.
Алгебраические дополнения.
Опр. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.
В частном случае, алгебраическим дополнением элемента матрицы называется его минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.
Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.
Обратная матрица.
Определим операцию деления матриц как операцию, обратную умножению.
Опр. Если существуют квадратные матрицы Х и А, удовлетворяющие условию:
XA = AX = E,
где Е - единичная матрица того же самого порядка, то матрица Х называется обратной к матрице А и обозначается А-1.
Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.
Рассмотрим общий подход к нахождению обратной матрицы.
Исходя из определения произведения матриц, можно записать:
AX = E Þ , i=(1,n), j=(1,n),
eij = 0, i ¹ j,
eij = 1, i = j .
Таким образом, получаем систему уравнений:
,
Решив эту систему, находим элементы матрицы Х.
Пример. Дана матрица А = , найти А-1.
Таким образом, А-1= .
Однако, такой способ не удобен при нахождении обратных матриц больших порядков, поэтому обычно применяют следующую формулу:
,
где Мji- дополнительный минор элемента аji матрицы А.
Пример. Дана матрица А = , найти А-1.
det A = 4 - 6 = -2.
M11=4; M12= 3; M21= 2; M22=1
x11= -2; x12= 1; x21= 3/2; x22= -1/2
Таким образом, А-1= .
Cвойства обратных матриц.
Укажем следующие свойства обратных матриц:
(A-1)-1 = A; 2) (AB)-1 = B-1A-1 3) (AT)-1 = (A-1)T.
Пример. Дана матрица А = , найти А3.
А2 = АА = = ; A3 = = .
Отметим, что матрицы и являются перестановочными.
Пример. Вычислить определитель .
= -1
= -1(6 – 4) – 1(9 – 1) + 2(12 – 2) = -2 – 8 + 20 = 10.
= = 2(0 – 2) – 1(0 – 6) = 2.
= = 2(-4) – 3(-6) = -8 + 18 = 10.
Значение определителя: -10 + 6 – 40 = -44
Базисный минор матрицы. Ранг матрицы.
Как было сказано выше, минором матрицы порядка s называется определитель матрицы, образованной из элементов исходной матрицы, находящихся на пересечении каких - либо выбранных s строк и s столбцов.
Опр. В матрице порядка m´n минор порядка r называется базисным, если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.
Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.
В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.
Опр. Порядок базисного минора матрицы называется рангом матрицы и обозначается Rg А.
Очень важным свойством элементарных преобразований матриц является то, что они не изменяют ранг матрицы.
Опр. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.
Надо отметить, что равные матрицы и эквивалентные матрицы - понятия совершенно различные.
Т. Наибольшее число линейно независимых столбцов в матрице равно числу линейно независимых строк.
Т.к. элементарные преобразования не изменяют ранг матрицы, то можно существенно упростить процесс нахождения ранга матрицы.
Пример. Определить ранг матрицы.
~ ~ , RgA = 2.
Пример: Определить ранг матрицы.
~ ~ ~ , Rg = 2.
Пример. Определить ранг матрицы.
~ , Þ Rg = 2.
Если с помощью элементарных преобразований не удается найти матрицу, эквивалентную исходной, но меньшего размера, то нахождение ранга матрицы следует начинать с вычисления миноров наивысшего возможного порядка. В вышеприведенном примере – это миноры порядка 3. Если хотя бы один из них не равен нулю, то ранг матрицы равен порядку этого минора.
Теорема о базисном миноре.
Т. В произвольной матрице А каждый столбец (строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.
Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице.
Если А- квадратная матрица и detA = 0, то по крайней мере один из столбцов – линейная комбинация остальных столбцов. То же самое справедливо и для строк. Данное утверждение следует из свойства линейной зависимости при определителе равном нулю.
Лекция 2. Основные понятия и определения: общий вид системы линейных уравнений (СЛУ) с 3-я переменными. Совместные определенные, совместные неопределенные, несовместные СЛУ.
Опр. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
, (1)
где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество
Опр. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.
Опр. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.
Опр. Для системы линейных уравнений вида (1) матрица
А = называется матрицей системы, а матрица
А*= называется расширенной матрицей системы
Опр. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна.
Элементарные преобразования систем.
К элементарным преобразованиям относятся:
1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.
2)Перестановка уравнений местами.
3)Удаление из системы уравнений, являющихся тождествами для всех х.
Теорема Кронекера – Капелли.
(условие совместности системы)
(Леопольд Кронекер (1823-1891) немецкий математик)
Т:Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.
RgA = RgA*.
Очевидно, что система (1) может быть записана в виде:
x1 + x2 + … + xn
Доказательство.
1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А* не изменяют ранга.
2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.
Пример. Определить совместность системы линейных уравнений:
A =
~ . RgA = 2.
A* = RgA* = 3.
Система несовместна.
Пример. Определить совместность системы линейных уравнений.
А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;
A* =
RgA* = 2.
Система совместна. Решения: x1 = 1; x2 =1/2.
Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных.
Метод удобен для решения систем невысокого порядка.
Метод основан на применении свойств умножения матриц.
Пусть дана система уравнений:
Составим матрицы: A = ; B = ; X = .
Систему уравнений можно записать:
A×X = B.
Сделаем следующее преобразование: A-1×A×X = A-1×B,
т.к. А-1×А = Е, то Е×Х = А-1×В
Х = А-1×В
Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка.
Пример. Решить систему уравнений:
Х = , B = , A =
Найдем обратную матрицу А-1.
D = det A = 5(4-9) + 1(2 – 12) – 1(3 – 8) = -25 – 10 +5 = -30.
M11 = = -5; M21 = = 1; M31 = = -1;
M12 = M22 = M32 =
M13 = M23 = M33 =
A-1 = ;
Cделаем проверку:
A×A-1 = =E.
Находим матрицу Х.
Х = = А-1В = × = .
Итого решения системы: x =1; y = 2; z = 3.
Несмотря на ограничения возможности применения данного метода и сложность вычислений при больших значениях коэффициентов, а также систем высокого порядка, метод может быть легко реализован на ЭВМ.
Метод Гаусса. (Карл Фридрих Гаусс (1777-1855) немецкий математик)
В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.
Рассмотрим систему линейных уравнений:
Разделим обе части 1–го уравнения на a11 ¹ 0, затем:
1) умножим на а21 и вычтем из второго уравнения
2) умножим на а31 и вычтем из третьего уравнения и т.д.
Получим:
, где d1j = a1j/a11, j = 2, 3, …, n+1.
dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1.
Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.
Пример. Решить систему линейных уравнений методом Гаусса.
Составим расширенную матрицу системы.
А* =
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: x3 = 2; x2 = 5; x1 = 1.
Пример. Решить систему методом Гаусса.
Составим расширенную матрицу системы.
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: z = 3; y = 2; x = 1.
Полученный ответ совпадает с ответом, полученным для данной системы матричным методом.