Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ»

1. Сравнение математических ожиданий

2. Сравнение дисперсий

ЛИТЕРАТУРА

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 11.1, 11.4.

2. Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, § 8.5.

3.Боциев И.Ф. Проверка статистических гипотез. Вл-з, СОГМА, 2002, 21 с.

1) Пусть имеется две выборки некоторой одной случайной величины, полученные в разных условиях, или двух разных случайных величин. Требуется проверить, одинаковы ли истинные математические ожидания, соответствующие этим выборкам. Такую ситуацию можно просмотреть на следующем примере.

Имеется две производственные линии, выпускающие одинаковые изделия. Качество изготовленного изделия характеризуется случайной величиной X. Был осуществлён контроль n изделий, изготовленных на первой линии, и получена выборка Xn = (x1, x2, …, xn). По второй линии осуществлён контроль над k изделиями и получена выборка X′k = (x′1, x′2, …, x′k). По этим выборкам нужно принять решение о том, одинаковые ли истинные математические ожидания величины X для этих линий.

Будем предполагать, что X имеет нормальное распределение: N(m1, σ12) для первой линии и N(m2, σ22) для второй линии.

Рассмотрим сначала вариант, когда σ1 и σ2 известны. Выдвигаем гипотезу H0: m1 = m2, т.е. математические ожидания одинаковы. Альтернативной гипотезой будет H1: m1 ≠ m2.

Оценка m1* будет иметь нормальное распределение с параметрами m1 и σ12/n, а оценка m2* – нормальное распределение с параметрами m2 и σ22/k. Если гипотеза H0 верна, то разность m1* – m2* будет распределена по нормальному закону с параметрами 0 и

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

Следовательно, величина

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru , (1)

является центрированной и нормированной нормально распределённой случайной величиной. Найдём двухстороннюю критическую область, пользуясь этим фактом. Положим

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru -

функция Лапласа. Таким образом, чтобы найти критическое значение tα, нужно решить уравнение

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru , (2)

при заданном уровне значимости α, пользуясь таблицей нормального распределения. Критическая область определяется неравенством Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru Отсюда вытекает правило принятия решения: если вычисленное значение t удовлетворяет неравенству – tα < t < tα, то гипотеза H0 принимается, если, напротив, Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru , то гипотеза H0 отвергается.

Смысл этого правила состоит в том, что t имеет нормальное эталонное распределение только при равенстве истинных математических ожиданий. Для неравенства Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru задана достаточно малая вероятность α. Если оно реализуется, то это означает, что произошло маловероятное событие. Мы предполагаем, что где-то в наших рассуждениях допущена ошибка. Ошибка может быть только в одном, а именно, в предположении о том, что гипотеза H0 истинна. Следовательно, гипотезу нужно отвергнуть. Заметим, что в таком случае мы совершаем ошибку с вероятностью α.

Исследуемая величина не обязательно должна иметь нормальное распределение. При больших n и k (порядка десятков) можно применять нормальное распределение, что оправдывается законом больших чисел. Если дисперсии одинаковы σ12 = σ22 = σ2 и одинаковы объёмы выборок n = k, то вычисление t упрощается:

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru , (3)

Рассмотрим теперь случай, когда σ1 и σ2 неизвестны. Будем считать, что σ12 = σ22 = σ2. Вычислим оценки этих дисперсии по первой и второй выборкам S12 и S22:

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

Если гипотеза H0 верна, то разность m1* – m2* будет распределена по нормальному закону с нулевым математическим ожиданием, а величина

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru , (4)

будет распределена по закону Стьюдента с n + k – 2 степенями свободы. Таким образом, уравнение

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

следует решать по таблицам распределения Стьюдента.

Пример 1. На двух заводах выпускаются автомобильные шины одной и той же марки. Были исследованы данные по времени нормальной эксплуатации шин. По 20 шинам первого завода были вычислены m1* = 36200 (км. пробега) и S12 = 252400. По 40 шинам второго завода были вычислены m2* = 37800(км. пробега) и S22 = 326200. С уровнем значимости α = 0,05 проверить гипотезу о том, что средний пробег шин, изготовленных на этих заводах, одинаков.

Решение. Вычислим S:

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

Далее вычислим t:

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

Решим уравнение

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

По таблицам распределения Стьюдента с числом степеней свободы 58 находим tα = 2. Так как

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

то гипотезу о равенстве среднего пробега шин, изготовленных на разных заводах, следует отвергнуть.

2) Рассмотрим снова две выборки. Первая выборка Xn = (x1, x2, …, xn) представляет измерения случайной величины X, вторая выборка Yk = (y1, y2, …, yk) представляет измерения случайной величины Y. Пусть вычислены оценки дисперсий:

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

Требуется проверить гипотезу о том, что истинные дисперсии этих величин одинаковы. Выдвигаем гипотезу H0: σx2 = σy2, т.е. дисперсии одинаковы. Альтернативной гипотезой будет H1: σx2 ≠ σy2. Если величины X и Y имеют нормальное распределение, то отношение F = Sx2/Sy2 будет иметь F-распределение (Фишера) со степенями свободы n – 1 и k – 1. Так как F-распределение не является симметричным, то можно построить двухстороннюю критическую область, полагая

P{F ≤ F1} = α/2 и P{F ≥ F2} = α/2.

Решая эти уравнения по таблице F-распределения, находим критические значения F1 и F2.

Правило принятия решения: если F1 < F < F2, то гипотеза о равенстве дисперсий принимается, в противном случае эта гипотеза отвергается.

Удобнее строить одностороннюю критическую область. Для этого в отношении F в знаменателе всегда нужно ставить меньшую оценку из Sx2 и Sy2. Тогда F будет всегда больше единицы и нижняя граница не потребуется. Полагают

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru , (5)

и решают уравнение

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru (6)

используя таблицы F-распределения с учётом чисел степеней свободы. Если F < Fα, то гипотеза о равенстве дисперсий принимается, если F ≥ Fα, то эта гипотеза отвергается.

Пример 2. По данным примера 1 с уровнем значимости α = 0,05 проверить гипотезу о равенстве истинных дисперсий пробега шин, изготовленных на первом и втором заводах.

Решение. В примере 1 мы предполагали, что они одинаковы. Так ли это?

Так как оценки дисперсий уже вычислены, то строим отношение F по формуле (5):

Лекция №5: «ПРОВЕРКА ГИПОТЕЗ О ПАРАМЕТРАХ РАСПРЕДЕЛЕНИЙ» - student2.ru

Решаем по таблицам уравнение P{F ≥ Fα} = 0,05, учитывая, что число степеней свободы меньшей дисперсии равно 19, а большей дисперсии – 39. Находим критическое значение: Fα = 2,02. Так как F = 1,3 < 2,02 = Fα, то гипотезу о равенстве истинных дисперсий можно принять.

Данный критерий можно применить и для сравнения двух или нескольких математических ожиданий. В частности, этот критерий в таком варианте применяется в дисперсионном анализе.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как находят двухстороннюю критическую область при сравнении математических ожиданий при известных дисперсиях?

2. Как находят двухстороннюю критическую область при сравнении математических ожиданий в случае неизвестных дисперсий?

3. Сформулируйте правило принятия решения при сравнении истинных дисперсий.

4. Как строится двухсторонняя критическая область при сравнении дисперсий?

Наши рекомендации