Распределение признака. Параметры распределения

Распределением признака называется закономерность встречаемо­сти разных его значений (Плохинский Н.А., 1970, с. 12).

В психологических исследованиях чаще всего ссылаются на нор­мальное распределение.

Нормальное распределение характеризуется тем, что крайние зна­чения признака в нем встречаются достаточно редко, а значения, близ­кие к средней величине - достаточно часто. Нормальным такое распре­деление называется потому, что оно очень часто встречалось в естест­веннонаучных исследованиях и казалось "нормой" всякого массового случайного проявления признаков. Это распределение следует закону, открытому тремя учеными в разное время: Муавром в 1733 г. в Англии, Гауссом в 1809 г. в Германии и Лапласом в 1812 г. во Франции (Плохинский Н.А., 1970, с.17). График нормального распределения представляет собой привычную глазу психолога-исследователя так на­зываемую колоколообразную кривую (см. напр., Рис. 1.1, 1.2).

Параметры распределения - это его числовые характеристики, указывающие, где "в среднем" располагаются значения признака, на­сколько эти значения изменчивы и наблюдается ли преимущественное появление определенных значений признака. Наиболее практически важными параметрами являются математическое ожидание, дисперсия, показатели асимметрии и эксцесса.

В реальных психологических исследованиях мы оперируем не па­раметрами, а их приближенными значениями, так называемыми оценка­ми параметров. Это объясняется ограниченностью обследованных выбо­рок. Чем больше выборка, тем ближе может быть оценка параметра к его истинному значению. В дальнейшем, говоря о параметрах, мы будем иметь в виду их оценки.

Среднее арифметическое (оценка математического ожидания) вы­числяется по формуле:

Распределение признака. Параметры распределения - student2.ru

где xi - каждое наблюдаемое значение признака;

i - индекс, указывающий на порядковый номер данного зна­чения признака;

п - количество наблюдений;

∑- знак суммирования.

Оценка дисперсии определяется по формуле:

Распределение признака. Параметры распределения - student2.ru

где xi - каждое наблюдаемое значение признака;

Распределение признака. Параметры распределения - student2.ru - среднее арифметическое значение признака;

n - количество наблюдений.

Величина, представляющая собой квадратный корень из несме­щенной оценки дисперсии (S), называется стандартным отклонением или средним квадратическим отклонением. Для большинства исследова­телей привычно обозначать эту величину греческой буквой σ (сигма), а не S. На самом деле, σ - это стандартное отклонение в генеральной совокупности, a S - несмещенная оценка этого параметра в исследован­ной выборке. Но, поскольку S - лучшая оценка σ (Fisher R.A., 1938), эту оценку стали часто обозначать уже не как S, а как σ:

Распределение признака. Параметры распределения - student2.ru

В тех случаях, когда какие-нибудь причины благоприятствуют более частому появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения. При левосторон­ней, или положительной, асимметрии в распределении чаще встречаются более низкие значения признака, а при правосторонней, или отрица­тельной - более высокие (см. Рис. 1.5).

Показатель асимметрии (A)вычисляется по формуле:

Распределение признака. Параметры распределения - student2.ru

В тех случаях, когда какие-либо причины способствуют преиму­щественному появлению средних или близких к средним значений, об­разуется распределение с положительным эксцессом. Если же в рас­пределении преобладают крайние значения, причем одновременно и бо­лее низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное (см. Рис. 1.6).

Показатель эксцесса (E) определяется по формуле:

Распределение признака. Параметры распределения - student2.ru

Распределение признака. Параметры распределения - student2.ru

Распределение признака. Параметры распределения - student2.ru

Рис. 1.6. Эксцесс: а) положительный; 6) отрицательный

В распределениях с нормальной выпуклостью E=0.

Параметры распределения оказывается возможным определить только по отношению к данным, представленным по крайней мере в интервальной шкале. Как мы убедились ранее, физические шкалы длин, времени, углов являются интервальными шкалами, и поэтому к ним применимы способы расчета оценок параметров, по крайней мере, с формальной точки зрения. Параметры распределения не учитывают истинной психологической неравномерности секунд, миллиметров и других физических единиц измерения.

На практике психолог-исследователь может рассчитывать пара­метры любого распределения, если единицы, которые он использовал при измерении, признаются разумными в научном сообществе.

Наши рекомендации