Краткие теоретические сведения. Тема 1. Случайные события и их вероятности
Тема 1. Случайные события и их вероятности.
1.1 Классическое и геометрическое определения вероятности.
При классическом определении вероятность случайного события определяется равенством , где - число элементарных исходов эксперимента (опыта, испытания), благоприятствующих появлению события ; - общее число равновозможных элементарных исходов эксперимента. Каждый из исходов (далее неделимых и взаимно исключающих друг друга) эксперимента называется его элементарным исходом (элементарным событием) и обозначается . Элементарные исходы называются равновозможными, если в силу условий проведения эксперимента можно считать, что ни один из них не является объективно более возможным, чем другие. Множество всех элементарных исходов эксперимента называется пространством элементарных исходов и обозначается . Исход называется благоприятствующимданному событию, если его появление влечёт за собой наступление такого события.
Противоположным событию называется событие , состоящее в том, что событие не происходит. Например, противоположным событию, определяемому словами «хотя бы один…» является событие, определяемое словами «ни один…». Если вероятность известна или легко может быть найдена, то вероятность вычисляют по формуле: .
Для вычисления общего числа элементарных исходов и числа элементарных исходов, благоприятствующих рассматриваемому событию, широко используются правила и формулы комбинаторики. Одной из основных задач комбинаторики является подсчёт числа комбинаторных конфигураций (комбинаций элементов), образованных из элементов некоторых конечных множеств в соответствии с заданными правилами. Примерами таких комбинаций являются перестановки, размещения и сочетания.
Сочетаниями из элементов по называются комбинации элементов, отличающиеся друг от друга только составом элементов. Они рассматриваются как элементарные исходы эксперимента, состоящего в одновременном выборе без возвращения любых элементов из различных элементов, а их общее число определяется формулой:
, где , .
Размещениями из элементов по называются комбинации элементов, отличающиеся друг от друга как составом элементов, так и порядком их следования. Они рассматриваются как элементарные исходы эксперимента, состоящего сначала в одновременном выборе без возвращения любых элементов из различных элементов, а затем в произвольном их упорядочивании. Общее число размещений определяется формулой: .
Перестановками из элементовназываются комбинации элементов, отличающиеся друг от друга только порядком их следования. Они рассматриваются как элементарные исходы эксперимента, состоящего в произвольном упорядочивании множества, состоящего из различных элементов, а их общее число определяется формулой .
Для подсчёта числа всевозможных комбинаторных конфигураций широко используются правила комбинаторики.
Пусть - элементы (действия) из некоторого конечного множества элементов (действий), которые можно выбрать (выполнить), соответственно, способами. Тогда справедливы следующие правила.
Правило сложения. Осуществить выбор (выполнение) только одного из элементов (действий) можно способами.
Правило умножения.Осуществитьпоследовательный выбор(выполнение) всех элементов (действий) можно способами.
Пусть эксперимент состоит в том, что наудачу бросается точка в некоторую область . Слово «наудачу» означает, что в таком эксперименте все точки области «равновозможны». В этом случае вероятность попадания точки в некоторую часть области равна отношению меры (длины, площади, объёма) этой части к мере всей области : , в предположении, что указанные меры определены, причём . Данное определение вероятности события называют геометрическим определением вероятности.
1.2 Условная вероятность. Формулы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
Всякое случайное событие можно рассматривать как подмножество (обратное утверждение, вообще говоря, места не имеет), состоящее из всех тех , которые благоприятствуют событию ( ). Множество называют достоверным событием, а пустое множество , являющееся по определению подмножеством , называют невозможным событием.
Если , то говорят, что событие влечёт событие .
Произведением событий и называют событие , происходящее тогда и только тогда, когда происходят одновременно оба события и . События и называют несовместными, если .
Суммой событий и называют событие , происходящее тогда и только тогда, когда происходит хотя бы одно из событий или .
Разностью событий и называют событие , происходящее тогда и только тогда, когда происходит событие , но не происходит событие . Событие , происходящее тогда и только тогда, когда событие не происходит, называют противоположнымсобытию . Разность событий всегда можно представить в виде .
Из определений вероятности следуют следующие её свойства:
1) ; 2) ; 3) ; 4) Если , то ;
5) ; 6) .
Пусть и - наблюдаемые события в эксперименте, причём . Условной вероятностью осуществления события при условии, что событие произошло в результате данного эксперимента, называется величина, определяемая равенством: .
События и , имеющие ненулевую вероятность, называются независимыми, если выполняется равенство или , в противном случае события и называются зависимыми.
Сложным называют событие, наблюдаемое в эксперименте и выраженное через другие наблюдаемые в том же эксперименте события с помощью допустимых алгебраических операций над событиями.
Вероятность осуществления того или иного сложного события вычисляется с помощью формул умножения вероятностей:
1) , ;
2) (для независимых событий)
и формул сложения вероятностей:
3) ;
4) (для несовместных событий).
Пусть - наблюдаемые события для данного эксперимента, попарно несовместные ( при ) и образующие полную группу событий ( ). Такие события принято называть гипотезамипо отношению к событию . Тогда для любого наблюдаемого в эксперименте события имеет место формула полной вероятности:
, где .
Пусть - совокупность гипотез по отношению к событию , безусловные вероятности которых , называемые априорными(доопытными), известны и пусть стало известно, что в результате эксперимента событие произошло. Тогда апостериорные(послеопытные) вероятности гипотез при условии, что событие имело место, вычисляются по формуле Байеса:
, где .
Формула Байеса позволяет переоценить вероятность каждой из гипотез после поступления дополнительной информации относительно осуществления тех или иных наблюдаемых событий.