Критические точки распределения Стьюдента

Число степеней свободы, ν Уровень значимости α
0,10 0,05 0,02 0,01
6,31 2,92 2,35 2,13 2,01 1,94 1,89 1,86 1,83 1,81 1,80 1,78 1,77 1,76 1,75 1,75 1,74 1,73 1,73 1,73 1,72 1,72 1,71 1,71 1,71 1,71 1,71 1,70 1,70 1,70 1,68 1,67 1,66 1,64 12,70 4,30 3,18 2,78 2,57 2,45 2,36 2,31 2,26 2,23 2,20 2,18 2,16 2,14 2,13 2,12 2,11 2,10 2,09 2,09 2,08 2,07 2,07 2,06 2,06 2,06 2,05 2,05 2,05 2,04 2,02 2,00 1,98 1,96 31,82 6,97 4,54 3,75 3,37 3,14 3,00 2,90 2,82 2,76 2,72 2,68 2,65 2,62 2,60 2,58 2,57 2,55 2,54 2,53 2,52 2,51 2,50 2,49 2,49 2,48 2,47 2,46 2,46 2,46 2,42 2,39 2,36 2,33 63,70 9,92 5,84 4,60 4,03 3,71 3,50 3,36 3,25 3,17 3,11 3,05 3,01 2,98 2,95 2,92 2,90 2,88 2,86 2,85 2,83 2,82 2,81 2,80 2,79 2,78 2,77 2,76 2,76 2,75 2,70 2,66 2,62 2,58

Критические точки распределения Стьюдента - student2.ru

Вычисленное tфакт сравним с табличным (критическим) значением tтабл при принятом уровне значимости α = 0,05 и числе степеней свободы
ν = n – l – 2 = 33 – 1 – 2 = 30 (приложение 1). Табличное значение по таблице распределения Стьюдента равно 1,70.

Фактическое значение критерия больше табличного, что свидетельствует о значимости множественного коэффициента корреляции и существенности связи между урожайностью зерновых, количеством внесенных органических удобрений и насыщенностью севооборота зерновыми.

4. Статистическую значимость уравнения регрессии в целом и показателя тесноты связи оценим с помощью общего F-критерия Фишера по формуле:

Критические точки распределения Стьюдента - student2.ru

где n – число единиц совокупности;

m – число факторов в уравнении линейной регрессии.

В нашем случае:

Критические точки распределения Стьюдента - student2.ru

Табличное значение Fтабл по таблице значений F-критерия Фишера при α=0,05, k1 = m = 2 и k2 = n – m – 1 = 33 – 2 – 1 = 30 (приложение 2) равно 3,32.

Фактическое значение критерия больше табличного, что свидетельствует о статистической значимости уравнения регрессии в целом и показателя тесноты связи Критические точки распределения Стьюдента - student2.ru , которые сформировались под неслучайным воздействием факторов х1 и х2.

Раздел 2. ОСНОВНЫЕ ПОНЯТИЯ ЭКОНОМЕТРИКИ

Эконометрика – наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов.

Эконометрика – это дисциплина, объединяющая совокупность теоретических результатов, методов и приемов, позволяющих на базе экономической теории, экономической статистики и математико-статистического инструментария получать количественное выражение качественным закономерностям. Курс эконометрики призван научить различным способам выражения связей и закономерностей, через эконометрические модели и методы проверки их адекватности, основанные на данных наблюдений. От математико-статистического, эконометрический подход отличается тем вниманием, которое уделяется в нем вопросу соответствия выбранной модели изучаемому объекту, рассмотрению причин, приводящих к необходимости пересмотра модели на основе более точной системы представлений.

Эконометрика занимается, по существу, статистическими выводами, т.е. использованием выборочной информации для получения некоторого представления о свойствах генеральной совокупности. Наиболее распространенными эконометрическими моделями, являются производственные функции и модели, описываемые системой одновременных уравнений.

Метод наименьших квадратов – традиционный метод, используемый для составления функциональной зависимости. Предполагает минимизацию квадратов отклонений значений результирующего фактора, рассчитанного с помощью функции от его фактического значения.

Корреляционный анализ – является одним из методов эконометрического анализа взаимозависимости нескольких признаков. Основная задача корреляционного анализа состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определении на ее основе оценок частных и множественных коэффициентов корреляции и детерминации.

Парный коэффициент корреляции характеризует тесноту линейной зависимости между двумя переменными:

Критические точки распределения Стьюдента - student2.ru

Его значения изменяются в пределах от -1 до 1, причем, чем ближе значение коэффициента по абсолютной величине к единице, тем сильнее

зависимость между переменными. В табл. 2 представлена оценка тесноты линейной связи с помощью коэффициента корреляции (r).

Таблица 2

Оценка тесноты линейной связи

Значение Критические точки распределения Стьюдента - student2.ru Теснота линейной связи
0 – 0,1 Связь отсутствует
0,1 – 0,3 Слабая
0,3 – 0,5 Умеренная
0,5 – 0,7 Заметная
0,7 – 0,9 Высокая
0,9 – 0,99 Очень высокая
Функциональная

При r > 0 связь прямая, т.е. с ростом х растет у.

При r < 0 связь обратная, т.е. с ростом х убывает у.

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной (результативной) и остальными, входящими в модель.

Значимость коэффициентов корреляции проверяется по t-критерию Стьюдента. Наблюдаемое (фактическое) значение находится по формуле:

Критические точки распределения Стьюдента - student2.ru

где r – значение частного или парного коэффициента корреляции;

l – порядок частного коэффициента корреляции, т.е. число фиксированных факторов. Для парного коэффициента корреляции l = 0.

Найденное значение сравнивается с табличным (приложение 1). Если tфакт > tтабл, то линейный коэффициент корреляции значим и существует связь между показателями х и у.

Квадрат коэффициента корреляции – коэффициент детерминации. Он показывает какая доля изменений результативного признака обусловлена изменением показателя х.

Регрессионный анализ – это статистический метод исследования зависимости случайной величины Y от переменных Xj (j = 1; k), рассматриваемых в регрессионном анализе как неслучайные величины

Критические точки распределения Стьюдента - student2.ru ,

где Критические точки распределения Стьюдента - student2.ru – средние квадратические отклонения

Критические точки распределения Стьюдента - student2.ru ;

Критические точки распределения Стьюдента - student2.ru .

Параметр определим из соотношения:

Критические точки распределения Стьюдента - student2.ru .

Получим уравнение:

Критические точки распределения Стьюдента - student2.ru .

Каждый из коэффициентов уравнения регрессии определяет среднее изменение урожайности за счет изменения соответствующих факторов и фиксированного уровня другого так, коэффициент при х1 показывает, что увеличение (или снижение) количества внесения удобрений на 1 ц ведет к повышению (или снижению) урожайности зерновых на 0,976 ц. Соответственно коэффициент при х2 определяет меру зависимости урожайности зерновых от насыщенности севооборота.

1.Для определения линейного коэффициента множественной корреляции используем формулу:

Критические точки распределения Стьюдента - student2.ru

Коэффициент множественной корреляции показывает наличие зависимости (связь умеренная) между анализируемыми признаками. Коэффициент множественной детерминации Критические точки распределения Стьюдента - student2.ru = 0,4952 = 0,245 свидетельствует, что 24,5% изменения урожайности зерновых связано с анализируемыми признаками.

3. Для проверки статистической значимости (существенности) множественного коэффициента корреляции рассчитаем t-критерий Стьюдента по формуле:

Решение

1. Уравнение множественной линейной регрессии имеет вид:

Критические точки распределения Стьюдента - student2.ru ,

где Критические точки распределения Стьюдента - student2.ru – урожайность зерновых с 1 га, ц;

х1 – внесено органических удобрений на 1 га, ц;

х2 – насыщенность севооборота, %;

а, b1 и b2 – параметры уравнения.

Для расчета параметров а, b1 и b2 сначала построим уравнение множественной регрессии в стандартизированном масштабе:

Критические точки распределения Стьюдента - student2.ru

где Критические точки распределения Стьюдента - student2.ru - стандартизированные переменные;

β1 и β2 – стандартизированные коэффициенты регрессии.

Стандартизированные коэффициенты регрессии определим по формулам:

Критические точки распределения Стьюдента - student2.ru

Критические точки распределения Стьюдента - student2.ru

Уравнение множественной регрессии в стандартизированной форме имеет вид:

Критические точки распределения Стьюдента - student2.ru .

Стандартизированные коэффициенты регрессии позволяют сделать заключение о сравнительной силе влияния каждого фактора на урожайность зерновых. Более значимое влияние оказывает первый фактор, а именно, количество внесенных органических удобрений. В целом же можно сказать, что влияние факторов на урожайность практически одинаково.

Для построения уравнения в естественной форме рассчитаем b1 и b2, используя формулы перехода от βi к bi:

независимо от истинного закона распределения Xj. Наиболее часто используемая множественная линейная модель регрессионного анализа имеет вид:

у = b0 + b1∙xi1 + b2∙xi2 +. . .+ bj∙xij +. . .+ bk∙xik.

Отметим, что эта модель линейна относительно неизвестных параметров b0, b1, b2,..., bj,..., bkи аргументов. Коэффициент регрессии bj показывает, на какую величину в среднем изменится результативный признак Y, если переменную Xj увеличить на единицу измерения, т.е. является нормативным коэффициентом.

Классическая линейная регрессионная модель с одной переменной – это модель вида:

уi = b0 + b1∙x + u,

в которой x – детерминированная (неслучайная) величина, u – случайная составляющая; у – результативный признак.

Статистическую значимость уравнения регрессии определяют с помощью F-критерия Фишера. Наблюдаемое (фактическое) значение находится по формуле:

Критические точки распределения Стьюдента - student2.ru

Найденное значение сравнивается с табличным (приложение 2). Если фактическое значение критерия больше табличного, то это свидетельствует о статистической значимости уравнения регрессии в целом и показателя тесноты связи r, то есть они статистически надежны и сформировались под неслучайным воздействием фактора х.

Оценить качество модели регрессии можно с помощью средней ошибки аппроксимации:

Критические точки распределения Стьюдента - student2.ru

Чем меньше рассеяние эмпирических точек вокруг теоретической линии регрессии, тем меньше средняя ошибка аппроксимации. Ошибка аппроксимации меньше 7% свидетельствует о хорошем качестве модели.

Коэффициент эластичности характеризует силу связи фактора х с результатом у, показывающий, на сколько процентов изменится значение у при изменении значения фактора х на 1%. Средний коэффициент эластичности линейной зависимости можно рассчитать по следующей формуле:

Критические точки распределения Стьюдента - student2.ru

Обобщающий коэффициент эластичности показывает, на сколько процентов изменится у относительно своего среднего уровня при росте х на 1% относительно своего среднего уровня.

Наши рекомендации