Вычисление теоретических частот
Критерий Пирсона основан на сравнении эмпирических (опытных) частот с теоретическими. Эмпирические частоты nI определяются по фактическим результатам наблюдений. Теоретические частоты, обозначаемые далее , находятся с помощью равенства
= n × pi ,
где n – количество испытаний, а pi º R (zi –1 < x < zi) - теоретическая вероятность попадания значений случайной величины в i-й промежуток (1 £ i £ 1).Теоретические вероятности вычисляются в условиях выдвинутой гипотезы о законе распределения изучаемой случайной величины.
В данном варианте принята гипотеза о показательном распределении случайной величины. В этом случае теоретическая вероятность pi при любом i вычисляется по одной из следующих трех формул (в зависимости от взаимного расположения i-ого промежутка и числа х0 ):
zi-1 zi x0
zi-1 x0 zi
x0 zi-1 zi
Процедура отыскания теоретических вероятностей и частот показана в расчетной таблице:
n = 150;
i | Концы промежутков | e-ui-1 | e-ui | Pi= e-ui-1- e-ui | =npi | |||||||||||||||||||||||||||||||||||||
zi -1 | zi | |||||||||||||||||||||||||||||||||||||||||
- ¥ | + |
|
2,71 3,09 +∞ | 1,0000 0,9524 0,6530 0,4477 0,3069 0,2104 0,1442 0,0989 0,0678 0,0465 | 0,9524 0,6530 0,4477 0,3069 0,2104 0,1442 0,0989 0,0678 0,0465 0,0000 |
|
|
å: 1 150
5.3 Статистика c2 и вычисление ее значения по опытным данным.
Для того чтобы принять или отвергнуть гипотезу о законе распределения изучаемой случайной величины, в каждом из критериев согласия рассматривается некоторая (специальным образом подбираемая) величина, характеризующая степень расхождения теоретического (предполагаемого) и статистического распределения.
В критерии Пирсона в качестве такой меры расхождения используется величина
,
называемая статистикой «хи - квадрат» или статистикой Пирсона (вообще, статистикой называют любую функцию от результатов наблюдений). Ясно, что всегда c2 ³0, причем c2 = 0, тогда и только тогда, когда при каждом i , т.е. когда все соответствующие эмпирические и теоретические частоты совпадают. Во всех остальных случаях c2 ¹ 0; при этом значение c2 тем больше, чем больше различаются эмпирические и теоретические частоты.
Прежде чем рассказать о применении статистики c2 к проверке гипотезы о закон е распределения , вычислим ее значение для данного варианта; это значение, найденное по данным наблюдений и в рамках выдвинутой гипотезы, будем обозначать через c2набл..
i | ni | |||||||||||||||||||||||||||||||
|
|
: 150 150 72,802
c2набл. =72,802
5.4. Распределение статистики c2.
Случайная величина имеет c2 – распределение с r степенями свободы (r = 1; 2; 3; …), если ее плотность имеет вид
где cr – которая положительная постоянная ( cr определяется из равенства ). Для дальнейшего изложения важно лишь отметить, что, во – первых, распределение определяется одним параметром – числом r степеней свободы и, во – вторых, существуют таблицы, позволяющие произвольно найти вероятность попадания значений случайной величины в любой промежуток.
Вернемся теперь к статистике . Отметим, что она является случайной величиной, поскольку зависит от результатов наблюдений и, следовательно, в различных сериях опытов принимает различные, заранее не известные значения. Понятно, кроме того, закон распределения статистики зависит: 1) от действительного (но неизвестного нам) закона распределения случайной величины, измерения которой осуществляются (им определяются эмпирические частоты ) ; 2) от количества произведенных наблюдений (от числа n) и от способа разбиения числовой оси на промежутки (в частности, от числа i ); 3) от теоретического (выдвинутого в качестве гипотезы) закона распределения изучаемой случайной величины (им определяются теоретические вероятности pi и теоретические частоты = n × pi )
Если выдвинутая гипотеза верна, то очевидно, закон распределения статистики зависит только от закона распределения изучаемой случайной величины, от числа n и от выбора промежутков разбиения. Но на самом же деле, в этом случае (благодаря мастерски подобранному Пирсоном выражению для ) справедливо куда более серьезное утверждение. А именно, при достаточно больших n закон распределения статистики практически не зависит от закона распределения изучаемой случайной величины и ни от количества n произведенных опытов: при распределение статистики стремится к - распределению с r степенями свободы. Эта теорема объясняет, почему статистика Пирсона обозначается через .
Если в качестве предполагаемого выбрано одно их трех основных непрерывных распределений (нормальное, показательное или равномерное), то r = i – 3, где i – количество промежутков, на которые разбита числовая ось (количество групп опытных данных). В общем случае
где - количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками.
Т.е. в данном варианте после группировки исходных данных получаем количество промежутков разбиения i = 10, = 2, т.к. количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками, = 2 – это λ и х0 для показательного распределения.
Следовательно
r = i- -1=10-2-1=7