Порядок работы с симплекс таблицей

Второй шаг

Покажем, что в выражении Порядок работы с симплекс таблицей - student2.ru только непростые переменные имеют ненулевой коэффициент. Заметим, что из выражения Порядок работы с симплекс таблицей - student2.ru простые переменные однозначно выражаются через непростые, так как число простых переменных равно числу уравнений. Пусть Порядок работы с симплекс таблицей - student2.ru — простые, а Порядок работы с симплекс таблицей - student2.ru — непростые переменные на данной итерации. Уравнение Порядок работы с симплекс таблицей - student2.ru можно переписать, как Порядок работы с симплекс таблицей - student2.ru . Умножим его на Порядок работы с симплекс таблицей - student2.ru слева: Порядок работы с симплекс таблицей - student2.ru . Таким образом мы выразили простые переменные через непростые, и в выражении Порядок работы с симплекс таблицей - student2.ru , эквивалентному левой части равенства, все простые переменные имеют единичные коэффициенты. Поэтому, если прибавить к равенству Порядок работы с симплекс таблицей - student2.ru равенство Порядок работы с симплекс таблицей - student2.ru , то в полученном равенстве все простые переменные будут иметь нулевой коэффициент — все простые переменные вида x сократятся, а простые переменные вида xs не войдут в выражение Порядок работы с симплекс таблицей - student2.ru .

Выберем ребро, по которому мы будем перемещаться. Поскольку мы хотим максимизировать Z, то необходимо выбрать переменную, которая будет более всех уменьшать выражение

Порядок работы с симплекс таблицей - student2.ru .

Для этого выберем переменную, которая имеет наибольший по модулю отрицательный коэффициент. Если таких переменных нет, то есть все коэффициенты этого выражения неотрицательны, то мы пришли в искомую вершину и нашли оптимальное решение. В противном случае начнём увеличивать эту непростую переменную, то есть перемещаться по соответствующему ей ребру. Эту переменную назовём входящей.

Третий шаг

Теперь необходимо понять, какая простая переменная первой обратится в ноль по мере увеличения входящей переменной. Для этого достаточно рассмотреть систему:

Порядок работы с симплекс таблицей - student2.ru

При фиксированных значениях непростых переменных система однозначно разрешима относительно простых, поэтому мы можем определить, какая из простых переменных первой достигнет нуля при увеличении входящей. Эту переменную назовемвыходящей. Это будет означать, что мы натолкнулись на новую вершину. Теперь входящую и выходящую переменную поменяем местами — входящая «войдёт» в простую, а выходящая из них «выйдет» в непростые. Теперь перепишем матрицу B и вектор cB в соответствии с новыми наборами простых и непростых переменных, после чего вернёмся ко второму шагу. x''

Поскольку число вершин конечно, то алгоритм однажды закончится. Найденная вершина будет являться оптимальным решением.

Двухфазный симплекс-метод[править | править вики-текст]

Причины использования[править | править вики-текст]

Если в условии задачи линейного программирования не все ограничения представлены неравенствами типа «≤», то далеко не всегда нулевой вектор будет допустимым решением. Однако каждая итерация симплекс-метода является переходом от одной вершины к другой, и если неизвестно ни одной вершины, алгоритм вообще не может быть начат.

Процесс нахождения исходной вершины не сильно отличается от однофазного симплекс-метода, однако может в итоге оказаться сложнее, чем дальнейшая оптимизация.

Модификация ограничений[править | править вики-текст]

Все ограничения задачи модифицируются согласно следующим правилам:

· ограничения типа «≤» переводятся на равенства созданием дополнительной переменной с коэффициентом «+1». Эта модификация проводится и в однофазном симплекс-методе, дополнительные переменные в дальнейшем используются как исходный базис.

· ограничения типа «≥» дополняются одной переменной с коэффициентом «−1». Поскольку такая переменная из-за отрицательного коэффициента не может быть использована в исходном базисе, необходимо создать ещё одну,вспомогательную, переменную. Вспомогательные переменные всегда создаются с коэффициентом «+1».

· ограничения типа «=» дополняются одной вспомогательной переменной.

Соответственно, будет создано некоторое количество дополнительных и вспомогательных переменных. В исходный базис выбираются дополнительные переменные с коэффициентом «+1» и все вспомогательные. Осторожно: решение, которому соответствует этот базис, не является допустимым.

Различия между дополнительными и вспомогательными переменными[править | править вики-текст]

Несмотря на то, что и дополнительные, и вспомогательные переменные создаются искусственно и используются для создания исходного базиса, их значения в решении сильно отличаются:

· дополнительные переменные сообщают, насколько соответствующее им ограничение «недоиспользовано». Значение дополнительной переменной, равное нулю, соответствует равенству значений правых и левых частей ограничения.

· вспомогательные переменные сообщают, насколько данное условие далеко от допустимого (относительно конкретного ограничения). Если значение вспомогательной переменной больше нуля, то данное решение не выполняет определённое ограничение, а значит не является допустимым.

То есть ненулевое значение дополнительной переменной может (но не должно) сигнализировать о неоптимальности решения. Ненулевое значение вспомогательной переменной сигнализирует о недопустимости решения.

Фазы решения[править | править вики-текст]

После того, как было модифицировано условие, создаётся вспомогательная целевая функция. Если вспомогательные переменные были обозначены, как yi, i∈{1, .., k}, то вспомогательную функцию определим, как

Порядок работы с симплекс таблицей - student2.ru .

После этого проводится обыкновенный симплекс-метод относительно вспомогательной целевой функции. Поскольку все вспомогательные переменные увеличивают значение Порядок работы с симплекс таблицей - student2.ru , в ходе алгоритма они будут поочерёдно выводится из базиса, при этом после каждого перехода новое решение будет всё ближе к множеству допустимых решений.

Когда будет найдено оптимальное значение вспомогательной целевой функции, могут возникнуть две ситуации:

· оптимальное значение Порядок работы с симплекс таблицей - student2.ru больше нуля. Это значит, что как минимум одна из вспомогательных переменных осталась в базисе. В таком случае можно сделать вывод, что допустимых решений данной задачи линейного программирования не существует.

· оптимальное значение Порядок работы с симплекс таблицей - student2.ru равно нулю. Это означает, что все вспомогательные переменные были выведены из базиса, и текущее решение является допустимым.

Во втором случае мы имеем допустимый базис, или, иначе говоря, исходное допустимое решение. Можно проводить дальнейшую оптимизацию с учётом исходной целевой функции, при этом уже не обращая внимания на вспомогательные переменные. Это и является второй фазой решения.

Вычисления по симплекс-методу организуются в виде симплекс-таблиц, которые являются сокращенной записью задачи линейного программирования в канонической форме. Перед составлением симплекс-таблицы задача должна быть преобразована, система ограничений приведена к допустимому базисному виду, c помощью которого из целевой функции должны быть исключены базисные переменные. Вопрос об этих предварительных преобразованиях мы рассмотрим ниже. Сейчас же будем считать, что они уже выполнены и задача имеет вид:

Порядок работы с симплекс таблицей - student2.ru

Здесь для определенности записи считается, что в качестве базисных переменных можно взять переменные X1, X2, ..., Xr и что при этом b1, b2,..., br ≥ 0 (соответствующее базисное решение является опорным).

Для составления симплекс-таблицы во всех равенствах в условии задачи члены, содержащие переменные, переносятся в левую часть, свободные оставляются справа, т.е. задача записывается в виде системы равенств:

Порядок работы с симплекс таблицей - student2.ru

Далее эта система оформляется в виде симплекс-таблиц:

Порядок работы с симплекс таблицей - student2.ru

Примечание. Названия базисных переменных здесь взяты лишь для определенности записи и в реальной таблице могут оказаться другими.

Порядок работы с симплекс таблицей

Первая симплекс-таблица подвергается преобразованию, суть которого заключается в переходе к новому опорному решению.

Алгоритм перехода к следующей таблице такой:

  • просматривается последняя строка (индексная) таблицы и среди коэффициентов этой строки (исключая столбец свободных членов Порядок работы с симплекс таблицей - student2.ru ) выбирается наименьшее отрицательное число при отыскании max, либо наибольшее положительное при задачи на min. Если такового нет, то исходное базисное решение является оптимальным и данная таблица является последней;
  • просматривается столбец таблицы, отвечающий выбранному отрицательному (положительному) коэффициенту в последней строке- ключевой столбец, и в этом столбце выбираются положительные коэффициенты. Если таковых нет, то целевая функция неограниченна на области допустимых значений переменных и задача решений не имеет;
  • среди выбранных коэффициентов столбца выбирается тот, для которого абсолютная величина отношения соответствующего свободного члена (находящегося в столбце свободных членов) к этому элементу минимальна. Этот коэффициент называется разрешающим, а строка в которой он находитсяключевой;
  • в дальнейшем базисная переменная, отвечающая строке разрешающего элемента, должна быть переведена в разряд свободных, а свободная переменная, отвечающая столбцу разрешающего элемента, вводится в число базисных. Строится новая таблица, содержащая новые названия базисных переменных:
  • разделим каждый элемент ключевой строки (исключая столбец свободных членов) на разрешающий элемент и полученные значения запишем в строку с измененной базисной переменной новой симплекс таблицы.
  • строка разрешающего элемента делится на этот элемент и полученная строка записывается в новую таблицу на то же место.
  • в новой таблице все элементы ключевого столбца = 0, кроме разрезающего, он всегдаравен 1.
  • столбец, у которого в ключевой строке имеется 0,в новой таблице будеттаким же.
  • строка, у которой в ключевом столбце имеется 0,в новой таблице будет такой же.
  • в остальные клетки новой таблицы записывается результат преобразования элементов старой таблицы:

Порядок работы с симплекс таблицей - student2.ru

В результате получают новую симплекс-таблицу, отвечающую новому базисному решению.

Теперь следует просмотреть строку целевой функции (индексную), если в ней нет отрицательных значений (в задачи на нахождение максимального значения), либо положительных (в задачи на нахождение минимального значения) кроме стоящего на месте Порядок работы с симплекс таблицей - student2.ru (свободного столбца), то значит, что оптимальное решение получено. В противном случае, переходим к новой симплекс таблице по выше описанному алгоритму.
Рассмотрим порядок решения задачи с помощью симплекс-таблиц на примере.

Пример 2.4.1

Если в только что рассмотренной задаче первое же полученное без всякого труда базисное решение оказалось допустимым, то в ряде задач исходное базисное решение может иметь одну, две и т. д. отрицательных компонент, т. е. быть недопустимым. В таких задачах надо сначала применить первый этап симплексного метода, т. е. с его помощью найти какое-либо допустимое решение (или установить несовместность системы ограничений), а затем уже искать оптимальное решение (сделать вывод о противоречии условий задачи). При этом надо помнить, что на первом этапе применения симплексного метода, т. е. пока мы ищем допустимое базисное решение, линейная форма не рассматривается, а все преобразования относятся только к системе ограничений.
Пусть задача линейного программирования задана в канонической форме, состоящей из m независимых уравнений с n переменными (или же она приведена к такому виду после введения добавочных неотрицательных переменных).
Выберем группу m основных переменных, которые позволяют найти исходное базисное решение (не нарушая общности, можем считать, что основными переменными являются первые m переменных). Выразив эти основные переменные через неосновные, получим следующую систему ограничений:

Порядок работы с симплекс таблицей - student2.ru (2.16)

Этому способу разбиения переменных на основные и неосновные соответствует базисное решение (k1 , k2, ... , km , 0, 0, ... , 0). Рассмотрим общий случай, когда это решение является недопустимым. От полученного базисного решения следует сначала перейти к какому-нибудь допустимому базисному решению. Причем не обязательно, чтобы этот переход осуществлялся сразу, за один шаг.
По предположению исходное базисное решение недопустимо. Следовательно, среди свободных членов системы ограничений (2.16) имеется хотя бы один отрицательный (число отрицательных свободных членов этой системы совпадает с числом отрицательных компонент исходного базисного решения). Пусть им является свободный член i-го уравнения ki , т. е. основная переменная xi в соответствующем базисном решении отрицательна.
Для перехода к новому базисному решению необходимо: выбрать переменную, которую следует перевести из неосновных в основные; установить, какая основная переменная при этом перейдет в число неосновных переменных. При переводе неосновной переменной в основные ее значение, как правило, возрастает: вместо нуля в исходном базисном решении оно будет положительно в новом базисном решении (исключая случай вырождения). Вернемся к i-му уравнению системы (2.16), содержащему отрицательный свободный член k1. Оно показывает, что значение переменной xi растет при возрастании значений тех неосновных переменных, которые в этом уравнении имеют положительные коэффициенты. Отсюда следует, что в основные можно переводить те неосновные переменные, которые в уравнении системы (2.16) с отрицательным свободным членом имеют положительные коэффициенты.

Здесь может быть три исхода:

1. в i-м уравнении системы (2.16) нет основных переменных с положительными коэффициентами, т. е. все коэффициенты bi, m+j (как и свободный член ki) отрицательны. В этом случае система ограничений несовместна, она не имеет ни одного допустимого решения, а следовательно, и оптимального;

2. в i-м уравнения имеется одна переменная xm+j , коэффициент b при которой положителен. В этом случае именно эта переменная переводится в основные;

3. в i-м уравнении имеется несколько переменных с положительными коэффициентами bi, m+j . В этом случае в основные можно перевести любую из них.

Транспортная задача (задача Монжа — Канторовича) — математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение.[1][2] Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки. Транспортная задача по теории сложности вычислений входит в класс сложности P. Когда суммарный объём предложений (грузов, имеющихся в пунктах отправления) не равен общему объёму спроса на товары (грузы), запрашиваемые пунктами потребления, транспортная задача называется несбалансированной (открытой).

Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку). Под названием транспортная задача, определяется широкий круг задач с единой математической моделью, эти задачи относятся к задачам линейного программирования и могут быть решены оптимальным методом. Однако, спец.метод решения транспортной задачи позволяет существенно упростить её решение, поскольку транспортная задача разрабатывалась для минимизации стоимости перевозок.

Классическую транспортную задачу можно решить симплекс-методом, но в силу ряда особенностей её можно решить проще (для задач малой размерности).

Условия задачи располагают в таблице, вписывая в ячейки количество перевозимого груза из Порядок работы с симплекс таблицей - student2.ru в Порядок работы с симплекс таблицей - student2.ru груза Порядок работы с симплекс таблицей - student2.ru , а в маленькие клетки — соответствующие тарифы Порядок работы с симплекс таблицей - student2.ru .

Итерационное улучшение плана перевозок[править | править вики-текст]

Нахождение опорного плана[править | править вики-текст]

Требуется определить опорный план и путём последовательных операций найти оптимальное решение. Опорный план можно найти следующими методами: «северо-западного угла», «наименьшего элемента», двойного предпочтения иаппроксимации Фогеля.

Метод северо-западного угла (диагональный или улучшенный)[править | править вики-текст]

На каждом этапе максимально возможным числом заполняют левую верхнюю клетку оставшейся части таблицы. Заполнение таким образом, что полностью выносится груз из Порядок работы с симплекс таблицей - student2.ru или полностью удовлетворяется потребность Порядок работы с симплекс таблицей - student2.ru .

Метод наименьшего элемента[править | править вики-текст]

Одним из способов решения задачи является метод минимального (наименьшего) элемента. Его суть заключается в сведении к минимуму побочных перераспределений товаров между потребителями.

Алгоритм:

1. Из таблицы стоимостей выбирают наименьшую стоимость и в клетку, которая ей соответствует, вписывают большее из чисел.

2. Проверяются строки поставщиков на наличие строки с израсходованными запасами и столбцы потребителей на наличие столбца, потребности которого полностью удовлетворены. Такие столбцы и строки далее не рассматриваются.

3. Если не все потребители удовлетворены и не все поставщики израсходовали товары, возврат к п. 1, в противном случае задача решена.

Итерации[править | править вики-текст]

После нахождения опорного плана перевозок, нужно применить один из алгоритмов его улучшения, приближения к оптимальному.

· Метод падающего камня (нем.)

· Метод потенциалов.

Решение с помощью теории графов[править | править вики-текст]

Рассматривается двудольный граф, в котором пункты производства находятся в верхней доле, а пункты потребления — в нижней. Пункты производства и потребления попарно соединяются рёбрами бесконечной пропускной способности и цены за единицу потока Порядок работы с симплекс таблицей - student2.ru .

К верхней доле искусственно присоединяется исток. Пропускная способность рёбер из истока в каждый пункт производства равна запасу продукта в этом пункте. Цена за единицу потока у этих рёбер равна 0.

Аналогично к нижней доле присоединяется сток. Пропускная способность рёбер из каждого пункта потребления в сток равна потребности в продукте в этом пункте. Цена за единицу потока у этих рёбер тоже равна 0.

Дальше решается задача нахождения максимального потока минимальной стоимости (mincost maxflow). Её решение аналогично нахождению максимального потока в алгоритме Форда — Фалкерсона. Только вместо кратчайшего дополняющего потока ищется самый дешёвый. Соответственно, в этой подзадаче используется не поиск в ширину, а алгоритм Беллмана — Форда. При возврате потока стоимость считается отрицательной.

Алгоритм «mincost maxflow» можно запускать и сразу — без нахождения опорного плана. Но в этом случае процесс решения будет несколько более долгим. Выполнение алгоритма «mincost maxflow» происходит не более чем за Порядок работы с симплекс таблицей - student2.ru операций. ( Порядок работы с симплекс таблицей - student2.ru — количество рёбер, Порядок работы с симплекс таблицей - student2.ru — количество вершин.) При случайно подобраных данных обычно требуется гораздо меньше — порядка Порядок работы с симплекс таблицей - student2.ru операций.

При решении несбалансированной транспортной задачи применяют приём, позволяющий сделать ее сбалансированной. Для этого вводят фиктивные пункты назначения или отправления. Выполнение баланса транспортной задачи необходимо для того, чтобы иметь возможность применить алгоритм решения, построенный на использовании транспортных таблиц.

Минимизация функций алгебры логики (ФАЛ) – это процедура нахождения наиболее простого

представления ФАЛ в виде суперпозиции функций, составляющих функционально полную систему, при

одновременной оптимизации ее технической реализации по некоторым критериям в условиях ряда

ограничений. Критериями оптимизации могут быть объем оборудования (количество вентилей, корпусов),

габариты, вес, энергопотребление, стоимость, быстродействие, надежность. В качестве ограничений могут

выступать допустимые к использованию системы элементов, число элементов в корпусе, коэффициенты

объединения по входу и разветвления по выходу логических элементов, необходимость реализации системы

ФАЛ, а также ряд перечисленных выше критериев оптимизаци

На практике обычно решается

задача оптимизации по нескольким или даже одному из критериев. Наиболее часто это делается по минимуму

необходимого числа базовых логических элементов И, ИЛИ, НЕ, так как при этом в большинстве случаев

удовлетворяются требования получения минимальных габаритов, веса, энергопотребления, стоимости, а также

повышения быстродействия и надежности. Иногда ограничиваются еще более простой задачей представления

ФАЛ в дизъюнктивной или конъюнктивной форме, содержащей наименьшее возможное число букв, когда,

например, для дизъюнктивных форм, в выражении присутствует как можно меньше слагаемых, являющихся

элементарными произведениями, которые в свою очередь содержат как можно меньше сомножителей. Такую

задачу принято называть канонической задачей минимизации ФАЛ.

Таблица 1.

№ наб. x2 x1 x0 y
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Пример. ФАЛ, заданную таблицей истинности (табл. 1), можно представить следующими выражениями

Порядок работы с симплекс таблицей - student2.ru (1)

Порядок работы с симплекс таблицей - student2.ru (2)

Порядок работы с симплекс таблицей - student2.ru (3)

Порядок работы с симплекс таблицей - student2.ru (4)

В выражении (1), записанном в СДНФ, пять слагаемых по три буквы в каждом, а всего 15 букв и три инвертора, в то время как в выражении (2) три слагаемых по две буквы в каждом, а всего 6 букв и три инвертора. Выражение (2) является минимальной дизъюнктивной формой для данной ФАЛ.

В выражении (3), записанном в СКНФ, три сомножителя по три буквы в каждом, а всего 9 букв и три инвертора, в то время как в выражении (4) два сомножителя по две и три буквы, а всего 5 букв и три инвертора. Выражение (4) является минимальной конъюнктивной формой для данной ФАЛ.

Применяя скобочные формы и формы с групповыми инверсиями, выражения (2) и (4) можно еще упростить:

Порядок работы с симплекс таблицей - student2.ru (5)

где 5 букв и два инвертора.

Порядок работы с симплекс таблицей - student2.ru (6)

где 5 букв и один инвертор.

В настоящее время в теории проектирования логических схем наиболее полно исследованы именно задачи минимизации дизъюнктивных и конъюнктивных нормальных форм, обеспечивающих рациональное решение при синтезе комбинационных схем, на входах которых доступны как переменные, так и их инверсии. Парафазное представление переменных легко обеспечивается, если они снимаются с выходов триггеров, используемых в качестве запоминающих ячеек разрабатываемых цифровых устройств.

Справедливости ради надо отметить, что сформулированная выше задача минимизации ФАЛ являлась чрезвычайно актуальной в тот период времени, когда разработка цифровых устройств велась на электромеханических переключательных элементах, дискретных радиокомпонентах и интегральных схемах малой степени интеграции.

Достигнутые в настоящее время схемотехнологические успехи в микроэлектроники, в частности создание схем средней, большой и сверхбольшой интеграции, таких как мультиплексоры, постоянные запоминающие устройства (ПЗУ), программируемые логические матрицы (ПЛМ) и другие разновидности программируемых логических интегральных схем, позволяют реализовать очень сложные системы ФАЛ практически, используя один корпус без каких-либо процедур минимизации.

Теория вероятности

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.


Примеры событий:

– попадание в цель при выстреле из орудия (опыт — произведение выстрела; событие — попадание в цель);
– выпадение двух гербов при трёхкратном бросании монеты (опыт — трёхкратное бросание монеты; событие — выпадение двух гербов);
– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт — измерение дальности; событие — ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита

A,B,CA,B,C

и т.д.

Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие

AA

— выпадание трех очков на первой игральной кости, событие

BB

— выпадание трех очков на второй кости.

AA

и

BB

— совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие

AA

— наудачу взятая коробка окажется с обувью черного цвета, событие

BB

— коробка окажется с обувью коричневого цвета,

AA

и

BB

— несовместные события.

Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная — невозможным.

Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера.

AA

— появление красного шара при одном извлечении,

BB

— появление белого шара,

CC

— появление шара с номером. События

A,B,CA,B,C

образуют полную группу совместных событий.

Случайная величина (СВ) – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.

Существует два вида выборок СВ: зависимые и независимые. Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми. Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у членов одной и той же группы.

Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.

Дискретной называется случайная величина, принимающая конечное или бесконечное счетное множество значений. Например: частота попаданий при трех выстрелах; число бракованных изделий в партии из nn штук; число вызовов, поступающих на телефонную станцию в течение суток; число отказов элементов прибора за определенный промежуток времени при испытании его на надежность; число выстрелов до первого попадания в цель и т. д.

Непрерывной называется случайная величина, которая может принимать любые значения из некоторого конечного или бесконечного интервала. Очевидно, что число возможных значений непрерывной случайной величины бесконечно. Например: ошибка при измерении дальности радиолокатора; время безотказной работы микросхемы; погрешность изготовления деталей; концентрация соли в морской воде и т. д.

Случайные величины обычно обозначают буквами X,YX,Y и т. д., а их возможные значения — x,yx,y и т. д. Для задания случайной величины недостаточно перечислить все ее возможные значения. Необходимо также знать, как часто могут появиться те или иные ее значения в результате испытаний при одних и тех же условиях, т. е. нужно задать вероятности их появления. Совокупность всех возможных значений случайной величины и соответствующих им вероятностей составляет распределение случайной величины.

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.

Функция произвольной вероятности[править | править вики-текст]

Пусть Порядок работы с симплекс таблицей - student2.ru является вероятностной мерой на Порядок работы с симплекс таблицей - student2.ru , то есть определено вероятностное пространство Порядок работы с симплекс таблицей - student2.ru , где Порядок работы с симплекс таблицей - student2.ru обозначает борелевскую σ-алгебру на Порядок работы с симплекс таблицей - student2.ru .

Определение 1. Вероятностная мера называется дискретной, если её носитель Порядок работы с симплекс таблицей - student2.ru не более, чем счётен, то есть существует не более, чем счётное подмножество Порядок работы с симплекс таблицей - student2.ru такое, что Порядок работы с симплекс таблицей - student2.ru .

Определение 2. Функция Порядок работы с симплекс таблицей - student2.ru , определённая следующим образом:

Порядок работы с симплекс таблицей - student2.ru

называется функцией вероятности Порядок работы с симплекс таблицей - student2.ru .

Функция вероятности случайной величины[править | править вики-текст]

Определение 3. Пусть Порядок работы с симплекс таблицей - student2.ru — случайная величина (случайный вектор). Тогда она индуцирует вероятностную меру Порядок работы с симплекс таблицей - student2.ru на Порядок работы с симплекс таблицей - student2.ru , называемую распределением. Случайная величина называется дискретной, если её распределение дискретно. Функция вероятности Порядок работы с симплекс таблицей - student2.ru случайной величины Порядок работы с симплекс таблицей - student2.ru имеет вид:

Порядок работы с симплекс таблицей - student2.ru .

или короче

Порядок работы с симплекс таблицей - student2.ru ,

где Порядок работы с симплекс таблицей - student2.ru .

Каждая случайная величина полностью определяется своей функцией распределения. В то же время при решении практических задач достаточно знать несколько числовых параметров, которые позволяют представить основные особенности случайной величины в сжатой форме. К таким величинам относятся в первую очередь математическое ожидание и дисперсия.

Математическое ожидание случайной величины

Математическое ожидание — это число, вокруг которого сосредоточены значения случайной величины.

Если x — дискретная случайная величина с распределением

Порядок работы с симплекс таблицей - student2.ru Порядок работы с симплекс таблицей - student2.ru ... Порядок работы с симплекс таблицей - student2.ru
Порядок работы с симплекс таблицей - student2.ru Порядок работы с симплекс таблицей - student2.ru ... Порядок работы с симплекс таблицей - student2.ru

то ее математическим ожиданием (обозначается Mx) называется величина, вычисленная по формуле

Порядок работы с симплекс таблицей - student2.ru ,

если число значений случайной величины конечно, и по формуле

Порядок работы с симплекс таблицей - student2.ru ,

если число значений случайной величины счетно. При этом, если ряд в правой части последнего равенства расходится, то говорят, что случайная величина x не имеет математического ожидания.

Математическое ожидание непрерывной случайной величины с плотностью вероятностей px(x) вычисляется по формуле

Наши рекомендации