Методы и модели корреляционно-регрессионного анализа
Общие сведения
Большинство явлений и процессов в экономике находится в постоянной взаимной и всеохватывающей объективной связи. Исследование зависимостей и взаимосвязей между объективно существующими явлениями и процессами играет большую роль в экономике. Оно дает возможность глубже понять сложный механизм причинно-следственных отношений между явлениями. Для исследования интенсивности, вида и формы зависимостей широко применяется корреляционно-регрессионный анализ, который является методическим инструментарием при решении задач прогнозирования, планирования и анализа хозяйственной деятельности предприятий.
Различают два вида зависимостей между экономическими явлениями и процессами:
· функциональную;
· стохастическую (вероятностную, статистическую).
В случае функциональной зависимости имеется однозначное отображение множества А на множество В. Множество А называют областью определения функции, а множество В – множеством значений функции.
Функциональная зависимость встречается редко. В большинстве случаев функция (Y) или аргумент (Х) – случайные величины. X и У подвержены действию различных случайных факторов, среди которых могут быть факторы, общие для двух случайных величин.
Если на случайную величину X действуют факторы Z1, Z2, ..., V1, V2, а на Y – Zo, Z2, V1, V3 ..., то наличие двух общих факторов Z2 и V1позволяет говорить о вероятностной или статистической зависимости между X и Y.
Определение.Статистической называется зависимость между случайными величинами, при которой изменение одной из величин влечет за собой изменение закона распределения другой величины.
В частном случае статистическая зависимость проявляется в том, что при изменении одной из величин изменяется математическое ожидание другой. В этом случае говорят о корреляции или корреляционной зависимости.
Статистическая зависимость проявляется только в массовом процессе, при большом числе единиц совокупности.
При стохастической закономерности для заданных значений зависимой переменной можно указать ряд значений объясняющей переменной, случайно рассеянных в интервале. Каждому фиксированному значению аргумента соответствует определенное статистическое распределение значений функции. Это обусловливается тем, что зависимая переменная, кроме выделенной переменной, подвержена влиянию ряда неконтролируемых или неучтенных факторов. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.
В экономике приходится иметь дело со многими явлениями, имеющими вероятностный характер. Например, к числу случайных величин можно отнести: стоимость продукции, доходы предприятия, межремонтный пробег автомобилей, время ремонта оборудования и т.д.
Односторонняя вероятностная зависимость между случайными величинами есть регрессия. Она устанавливает соответствие между этими величинами.
Односторонняя стохастическая зависимость выражается с помощью функции, которая называется регрессией.
Регрессия тесно связана с корреляцией. Корреляцияв широком смысле слова означает связь, соотношение между объективно существующими явлениями. Связи между явлениями могут быть различными по силе. При измерении тесноты связи говорят о корреляции в узком смысле слова. Если случайные переменные причинно обусловлены и можно в вероятностном смысле высказаться об их связи, то имеется корреляция.
Понятия «корреляция» и «регрессия» тесно связаны между собой. В корреляционном анализе оценивается сила связи, а в регрессионном анализе исследуется ее форма. Корреляция в широком смысле объединяет корреляцию в узком смысле и регрессию.
Любое причинное влияние может выражаться либо функциональной, либо корреляционной связью. Но не каждая функция или корреляция соответствует причинной зависимости между явлениями. Поэтому требуется обязательное исследование причинно-следственных связей.
Исследование корреляционных связей мы называем корреляционным анализом, а исследование односторонних стохастических зависимостей - регрессионным анализом. Корреляционный и регрессионный анализ имеют свои задачи.
К задачам корреляционного анализа относятся следующие:
1. Измерение степени связности (тесноты, силы) двух и более явлений. Здесь речь идет, в основном, о подтверждении уже известных связей.
2. Отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения тесноты связи между явлениями.
3. Обнаружение неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между явлениями, но устанавливает степень необходимости этих связей и достоверность суждений об их наличии. Причинный характер связей выясняется с помощью логически-профессиональных рассуждений, раскрывающих их механизм.