Множественная (многофакторная) регрессия
Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной)регрессии:
(6)
Построение моделей множественной регрессии включает несколько этапов:
1. Выбор формы связи (уравнения регрессии);
2. Отбор факторных признаков;
3. Обеспечение достаточного объема совокупности.
Выбор типа уравнения затрудняется тем, что для любой формы зависимости можно выбрать целый ряд уравнений, которые в определенной степени будут описывать эти связи. Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации.
Важным этапом построения уже выбранного уравнения множественной регрессии является отбор и последующее включение факторных признаков.
С одной стороны, чем больше факторных признаков включено в уравнение, тем оно лучше описывает явление. Однако модель размерностью 100 и более факторных признаков сложно реализуема и требует больших затрат машинного времени. Сокращение размерности модели за счет исключения второстепенных, экономически и статистически несущественных факторов способствует простоте и качеству ее реализации. В то же время построение модели регрессии малой размерности может привести к тому, что такая модель будет недостаточно адекватна исследуемым явлениям и процессам.
Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена на основе интуитивно-логических или многомерных статистических методов анализа.
Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия(шаговый регрессионный анализ). Сущность метода шаговой регрессии заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым «прямым методом». При проверке значимости введенного фактора определяется на сколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции (R ). Одновременно используется и обратный метод, то есть исключение факторов, ставших незначимыми. Фактор является незначимым, если его включение в уравнение регрессии только изменяет значения коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициента регрессии не изменяется (или меняется несущественно), то данный признак существенен и его включение в уравнение регрессии необходимо. В противном случае, фактор нецелесообразно включать в модель регрессии.
При построении модели регрессии возможна проблема мультиколлинеарности, под которой понимается тесная зависимость между факторными признаками, включенными в модель ( > 0,8).
Наличие мультиколлинеарности между признаками приводит к:
§ искажению величины параметров модели, которые имеют тенденцию к завышению, чем осложняется процесс определения наиболее существенных факторных признаков;
§ изменению смысла экономической интерпретации коэффициентов регрессии.
В качестве причин возникновения мультиколлинеарности между признаками, можно выделить следующие:
§ изучаемые факторные признаки являются характеристикой одной и той же стороны явления или процесса. Например: показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;
§ факторные признаки являются составляющими элементами друг друга;
§ факторные признаки по экономическому смыслу дублируют друг друга.
Устранение мультиколлинеарности может реализовываться через исключение из корреляционной модели одного или нескольких линейно-связанных факторных признаков или преобразование исходных факторных признаков в новые, укрупненные факторы.
Вопрос о том, какой из факторов следует отбросить, решается на основании качественного и логического анализа изучаемого явления.
Качество уравнения регрессии зависит от степени достоверности и надежности исходных данных и объема совокупности. Исследователь должен стремиться к увеличению числа наблюдений, так как большой объем наблюдений является одной из предпосылок построения адекватных статистических моделей.
Аналитическая форма связи результативного признака от ряда факторных выражается и называется многофакторным (множественным) уравнением регрессии или моделью связи.
Линейное уравнение множественной регрессии имеет вид:
(7)
где - теоретические значения результативного признака, полученные в результате подстановки соответствующих значений факторных признаков в уравнение регрессии;
- факторные признаки;
- параметры модели (коэффициенты регрессии).
Параметры уравнения могут быть определены графическим методом, методом наименьших квадратов и так далее.