Многофакторный регрессионный анализ в оценке недвижимости

ТЕОРИЯ ОЦЕНКИ

Регрессия в математической статистике – это зависимость среднего значения какой-либо величины от некоторой другой величины или от нескольких величин.

Как известно, явления общественной жизни складываются под воздействием не одного, а целого ряда факторов, т. е. эти явления многофакторны. Между факторами существуют сложные взаимосвязи, поэтому их влияние комплексное и его нельзя рассматривать как простую сумму изолированных влияний.

Факторный анализ позволяет определить, какое влияние на изучаемый показатель оказало изменение того или иного фактора.

При моделировании функциональных факторных моделей необходимо соблюдать ряд требований:

1. Факторы, включаемые в модель, должны реально существовать и иметь конкретноефизическое значение.

2. Факторы, которые входят в систему факторного анализа, должны иметь причинно-следственную связь с изучаемым показателем.

3. Факторная модель должна обеспечивать измерение влияния конкретного фактора на общий результат.

Метод применяется для построения прогноза какого-либо показателя с учетом существующих связей между ним и другими показателями. Сначала в результате качественного анализа выделяется k факторов (X1, X2,..., Xk), влияющих на изменение прогнозируемого показателя Y, и строится чаще всего линейная регрессионная зависимость типа:

Многофакторный регрессионный анализ в оценке недвижимости - student2.ru

где Ai - коэффициенты регрессии, i = 1,2,...,k.

Значения коэффициентов регрессии (A0, A1, A2,..., Ak) определяются в результате сложных математических вычислений, которые обычно проводятся с помощью стандартных статистических компьютерных программ.

Определяющее значение при использовании данного метода имеет нахождение правильного набора взаимосвязанных признаков, направления причинно-следственной связи между ними и вида этой связи, которая не всегда линейна.

Для успешного применения данного метода необходимо выполнение трёх основных условий:

Ø наличие обширной и достоверной базы данных о сделках купли-продажи с описанием физических и экономических характеристик объектов недвижимости, участвовавших в этих сделках;

Ø наличие критерия подбора аналогов из вышеуказанной базы данных;

Ø существование методологии расчёта соответствующих поправок к стоимости выбранных аналогов.

В основном, при подборе аналогов и внесении поправок эксперты-оценщики руководствуются профессиональным опытом и интуицией, что является заведомо субъективным подходом. Привлечение современных статистических методов для обработки и анализа данных, используемых для сопоставления, позволяет снизить влияние субъективизма оценщика.

Для решения задач, связанных с обработкой и анализом статистической информации применяются методы математической статистики. Эти методы позволяют выявить закономерности на фоне случайностей, делать обоснованные выводы и прогнозы, давать оценку вероятностей их выполнения или невыполнения. В последнее время статистические методы, а в частности методы корреляционного и регрессионного анализа, находят всё более широкое применение в оценочной деятельности, правда. Оценщику, владеющему принципами, методами и навыками статистического моделирования, значительно легче обосновать результаты оценки, а также спрогнозировать рыночную стоимость на базе имеющихся данных.

После того, как выявлены наиболее существенные факторы, влияющие на стоимость рассматриваемых объектов, встает вопрос о подборе вида функциональной зависимости, т. е. виде многофакторной регрессионной модели. От правильности этого выбора зависит то, насколько построенная модель будет адекватна изучаемому явлению, т. е. будет ли она соответствовать ему при заданном уровне точности, что, в свою очередь, предопределяет практическую ценность получаемых результатов.

Запас кривых для описания статистических данных, которыми располагает математический анализ, бесконечно разнообразен. Для выбора той из них, которая наиболее адекватна не только имеющемуся эмпирическому материалу, но и истинной зависимости между изучаемым показателем и обуславливающими его факторами, исходят из соображений самого различного характера — логического, графического и статистического.

При прочих равных условиях предпочтение отдается модели, зависящей от меньшего числа параметров, т. к. для их оценки требуется меньшее количество эмпирических данных.

На практике наибольшее распространение получили линейные (1), степенные (2) и экспоненциальные (3) формы зависимости.

y = a0 + a1x1 + a2x2 + … + anxn (1)

y = a0x1a1x2a2 … xnan (2)

y = a0ea1x1ea2x2 … eanxn (3)

y = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6, (4)

где например:

y — стоимость 1 м2 внутренней площади объекта (руб.);

x1 — затраты на улучшение единицы площади (руб./м2);

x2 — принадлежность к центральной зоне;

x3 — средневзвешенный физический износ (%);

x4 — соотношение общих наружной и внутренней площадей;

x5 — курс руб./US$ на дату оценки;

x6 — доля неподвальных помещений в общей площади.

Наши рекомендации