Как ориентироваться находясь в море, океане?
Используя звездные светила для определения сторон света, можно определить также и географические координаты, что поможет вам лучше сориентироваться находясь в море. Для определения широты вам понадобятся самодельный транспортир и отвес. Транспортир изготовьте из двух планок прямоугольной формы скрепив их между собой наподобие циркуля. Так чтобы они могли раздвигаться. В центре транспортира закрепить нить отвеса и наведите основание на полярную звезду. Теперь из угла образованного основанием транспортира и отвесом вычтите 900. В результате получите значение угла между горизонтом и полярной звездой. Это значение и будет ваша широта. О близости суши вас могут уведомить птицы, которые не залетают далеко в море. Изменение цвета воды, смена облаков на кучевые и другая конфигурация волн также свидетельствуют о близости суши. Смотрите также раздел об ориентировании на местности.
Но пожалуй, самым ярким доказательством токсического действия морской воды стал результат работы английских исследователей. Они тщательно изучили и проанализировали 448 случаев катастроф, постигших британские торговые суда во время второй мировой войны. Значительной части матросов и пассажиров из 27 тыс. человек, находившихся на борту этих судов, удалось спастись. Многим помощь была оказана сразу же после катастрофы. Но примерно 5 тыс. человек еще много дней после кораблекрушения носило по волнам в спасательных шлюпках и на плотах. И вот оказалось, что из 977 человек, утолявших жажду морской водой, погибло 387 (38,8%). В тс же время из 3994 моряков, не употреблявших для питья соленую воду, умерло лишь 133 (3,3%). Если даже принять во внимание, что часть людей погибла по другим причинам, что в первой группе некоторые люди не пили морской воды, а во второй находились моряки, соблазнившиеся морской водой, все же приведенные цифры весьма убедительны.
В составе морской воды преобладают хлориды (88,7%), меньшую долю составляют сульфаты (10,8%) и карбонаты (0,3%). На все прочие соединения приходится лишь 0,2%. Общий вес всех солей в граммах, растворенных в одном килограмме воды, называется соленостью. Что поразительно, так это постоянство солевого состава, на которое указывает одно и то же для всех участков океана значение так называемого хлорного коэффициента - отношения общего количества солей, растворенных в воде, к содержанию хлора (Муромцев, 1956). Вместе с тем соленость морских и океанских вод неодинакова. Иногда солей совсем немного, всего 3 -4 г на 1 л воды, как, например, в Финском заливе. В Азовском и Черном морях их несколько больше - 10 - 18 г/л. В океанах содержание солей возрастает до 32 - 35 г/л. Более 40 г соли содержится в каждом литре воды Красного моря.
Одно из удивительных свойств человеческого организма - умение сохранять го-меостаз - постоянство своей внутренней среды. За этим бдительно следят бесчисленные живые датчики - хеморецепторы, баро-рецепторы, терморецепторы. За концентрацией различных веществ, растворенных в жидких средах организма, плазме крови, лимфе, межклеточной жидкости, наблюдают свои дозорные - осморецепторы.
Обычно с пищей человек получает примерно 15-2 5 г соли в день, главным образом хлористого натрия. Этого количества достаточно для удовлетворения его потребностей. Но едва организм получит излишек солей, как осморецепторы немедленно поднимут тревогу и не успокаиваются до тех пор, пока утраченное равновесие не будет восстановлено. Избыточные соли выводятся через почки, на которых лежит обязанность обеспечить осмотический гомеостаз. По данным В. Леделла, прием 500,0 мл 3 - 4%-ного раствора соли увеличивает мочеотделение с 0,36 до 1,56 мл/мин, т. е. почти в 5 раз.
Известно, что на каждый грамм веществ, образующихся в результате процессов обмена, в том числе солей, необходимо не менее 50 мл жидкости (максимальная концентрация мочи - 2%). Следовательно, чтобы удалить 3,5 г солей, поступивших со 100 мл океанской воды, требуется израсходовать примерно 150 мл жидкости, т.е. израсходовать дополнительно к выпитой еще 50 мл из внутренних резервов. Если даже согласиться с мнением А. Гембла, В.Леделла и других ученых, что часть солей усваивается и потому 15 - 20% выпитой воды все же остается в организме, то для удовлетворения его потребностей в жидкости придется ежедневно выпивать 8 - 10 л горько-соленой океанской влаги. Возможно ли это? Справятся ли почки с такой огромной солевой нагрузкой?
Чтобы вывести из организма соли, растворенные в 1 л океанской воды, почки затрачивают 970 кал, значит, на 8 - 10 л потребуется 7760 - 9670 кал. Максимальная же теоретическая работоспособность почек составляет всего 5670 кал/сутки. Кроме того, и это нельзя не учитывать, концентрационная способность почек при длительной солевой нагрузке постепенно снижается. В результате почки рано или поздно перестают справляться с непосильной работой, и тогда концентрация солей в крови и тканях начнет стремительно нарастать. В результате поражаются почки, желудок, кишечник. Но особенно уязвима к действию солей центральная нервная система. Вот почему среди людей, потерпевших кораблекрушение и не выдержавших соблазна утолить жажду океанской водой, так часто наблюдались психические расстройства, сопровождающиеся попытками к самоубийству.
Вот как описывает картину гибели человека от интоксикации, вызванной океанской водой, английский врач М. Кришли:
<Жажда утоляется лишь очень ненадолго, и по истечении короткого промежутка времени человек испытывает еще большую потребность в воде. Затем он затихает, его охватывает апатия, глаза стекленеют, губы, рот и язык высыхают, появляется специфический неприятный запах изо рта. Часа через два у человека начинается бред, сначала спокойный, потом лихорадочный. Сознание затемняется, в уголках губ появляется пена, цвет лица меняется. Агония, как правило, протекает бурно, и человек умирает, не приходя в сознание>.
Несмотря на запреты и неприятный горько-соленый вкус, люди, мучимые жаждой, все же пьют океанскую воду, но то небольшое облегчение, которое они чувствуют вначале, лишь маскирует разрушительное действие солей на клетки и ткани организма.
И все же спор между сторонниками и противниками морской воды продолжался. Более того, после опубликования в печати рекомендаций А. Бомбара и экспериментальных данных Ж. Ори среди моряков стало распространяться убеждение, что вредность питья морской воды преувеличена.
В связи с этим Комитет по безопасности мореплавания в 1959 г. обратился к Всемирной организации здравоохранения с просьбой высказать свое компетентное заключение по этой проблеме.
В Женеву были приглашены видные специалисты по проблеме выживания в океане, биологи и физиологи - Р. А. Маккенс и Ф. В. Баскервиль из Англии, швейцарец Ж. Фабр, француз Ш. Лабори и американец А. В. Вольф. Эксперты обстоятельно изучили материалы многочисленных экспериментов на людях и лабораторных животных, проанализировали случаи использования морской воды терпящими бедствие и пришли к единодушному мнению, что морская вода разрушительно действует на организм человека. Она вызывает глубокие расстройства многих органов и систем.
Поэтому памятками и инструкциями для моряков и летчиков питье морской воды в условиях автономного пребывания на спасательных лодках и плотах запрещено.
Так чем же утолить жажду при отсутствии пресной воды?
Рыбьим соком, советует Ален Бомбар.
Сколько же потребуется рыбы, чтобы влагой, содержащейся в ее мышцах, напоить человека, страдающего от жажды?
Тело рыбы почти на 80% состоит из воды. Но чтобы извлечь ее, необходимо специальное приспособление, нечто вроде портативного пресса. Однако даже с его помощью отжать удается не так уж много воды. Например, из 1 кг морского окуня можно получить лишь 50 г сока, мясо корифены дает около 300 г, из мяса тунца и трески можно нацедить до 400 г мутноватой, пахнущей рыбой жидкости. Возможно, этот <напиток>, не очень приятный на вкус, и помог бы решению проблемы, если бы не одно серьезное <но>-высокое содержание в нем веществ, небезразличных для организма человека. Так, в одном литре необезжиренного рыбьего сока содержится 80 - 150 г жира, 10 - 12 г азота, 5 - 80 г белков и до 450 мэкв солей натрия, калия и фосфора.
Как же будет на них реагировать организм?
Ответ на этот вопрос попытался получить английский ученый С. Хантер. Восемь испытуемых поместили в тепловую камеру и в течение первых двух суток давали по 250 мл воды. На третьи сутки, когда у всех участников эксперимента появились выраженные признаки обезвоживания, четырем из них выдали дополнительно по одному литру рыбьего сока.
Выпитый рыбий сок вызвал значительное (до 1005 мл) увеличение суточного диуреза. Следовательно, почти вся выпитая жидкость была использована организмом на удаление веществ, содержащихся в соке. У четырех испытуемых (контрольной группы) суточное количество мочи составляло лишь 608 мл, однако на ее образование организм затратил дополнительно 358 мл жидкости из своих внутренних резервов. Следовательно, выпитый рыбий сок способствовал некоторому сбережению эндогенных запасов воды, поскольку потоотделение у всех восьми испытуемых осталось на прежнем уровне. Результаты эксперимента, проведенного С. Ханте-ром, показали, что при отсутствии пресной воды рыбий сок может в какой-то мере облегчить положение людей, терпящих бедствие в океане.
Многочисленные памятки и инструкции для терпящих бедствие в океане рекомендуют: собирайте в ночное время росу, пополняйте запасы пресной воды за счет дождя. Дожди нередки в тропиках. В них ваше спасение. Так ли это? Ален Бомбар приветствовал первый дождь лишь на 23 сутки плавания. Уильям Уиллис за 116 дней путешествия на плоту воспользовался небесной влагой один раз, да и то лишь на 76 сутки после выхода из порта Кальяо, а по свидетельству Алена Брэна, соратника Эрика де Бишопа по экспедиции в Тихом океане на плоту <Таити-Нуи>, <против всех ожиданий, за два с половиной месяца плавания не выпало ни одного хорошего дня>.
Итак, дождь, роса, рыбий сок - все это источники, на которые трудно полагаться с уверенностью. Правда, на спасательных шлюпках всегда имеется запас пресной воды. Но в жарком климате вода не может сохраняться подолгу в деревянных бочонках и <зацветает>, приобретая неприятный запах и вкус. Ее часто приходится заменять свежей. Это хлопотно, да к тому же на кораблях, подолгу плавающих в тропиках, запас питьевой воды и без того всегда ограничен.
В последние десятилетия на смену флягам и анкеркам пришли <водяные консервы>. Воду после специальной обработки заключали в запаянные жестяные банки по 300 - 500 мл. Там она могла сохраняться многие месяцы. Но много ли банок можно уложить на маленький спасательный плот?
И снова взоры моряков и ученых обратились к морской воде. Если ее нельзя пить такой, какая она есть, то надо избавиться от того, что делает ее опасной, - от солей. Например, соорудить перегонный куб и гнать опресненную, дистиллированную воду, используя солнечное тепло. Стоило родиться идее, и как грибы после дождя появилось целое семейство разнообразных <перегонных устройств> для терпящих бедствие в океане.
Уже во время второй мировой войны стали выпускаться дистилляторы в виде цилиндров, выстланных изнутри слоем черной губки, которую пропитывали морской водой. Вода нагревалась солнцем, и охлажденный пар стекал в водосборник. Такие устройства давали до 0,7 л воды в сутки.
Один из наиболее распространенных дистилляторов сконструирован в виде шара из прозрачного пластика. Внутри его находится второй шар несколько меньших размеров, сделанный из черного материала. Дистиллятор надо заполнить морской водой, надуть воздухом и, привязав к лодке пустить гулять по волнам. Солнце нагревает воду, пар проходит по системе трубок и, оседая на стенках, каплями пресной воды сбегает в пластиковый резервуар (рис. 129).
Рис. 129. Солнечный дистиллятор. 1. Резервуар для заливания морской воды. 2. Внутренняя оболочка испарителя (из черной ткани). 3. Прозрачная пластиковая оболочка. 4. Соединительный зажим. 5. оединительный шнур. 6. Трубка для заполнения балласта. 7. Сифон для пресной воды. 8. Тканевый дренаж для соленой воды. 9. Балластная трубка. 10. Трубка для надувания опреснителя и соединения его с контейнером. 11. Контейнер для сбора пресной воды. 12. Шипы, разъединяющие оболочки.
Однако прибор этот страдает одним весьма существенным недостатком: в пасмурный день и в ночное время он бездействует.
Остроумный выход из положения нашли конструкторы английской фирмы <Дэн-лоп>. Их дистиллятор, выполненный в виде сферы из прозрачного материала, имеет в нижней части специальную чашу, обрамленную тепловым экраном из черной пленки. Когда дистиллятор опускают за борт, между верхней его частью, обдуваемой воздухом, и нижней, находящейся в воде, создается разность температур. Вода в чаше начинает испаряться и, конденсируясь на внутренней поверхности верхней полусферы, стекает в водосборник, из которого ее можно отсасывать через специальную трубку. Новый дистиллятор действует в любую погоду, днем и ночью и дает до 1,5 л воды в сутки.
Химики предложили опреснять морскую воду с помощью препаратов, которые вступали в химическую реакцию с растворенными в ней солями, образуя нерастворимые соединения. Для этой цели широко используются природные минеральные вещества - цеолиты. Они обладают способностью связывать положительно заряженные молекулы солей натрия, калия, кальция, магния, выпадая в нерастворимый осадок. Чтобы избавиться от молекул хлора, к цеолитам, добавляют препараты серебра.
Для получения пресной воды резиновый мешочек заполняют морской водой и, добавив измельченный препарат, встряхивают минут 10-15.
Еще более высокую способность к ионному обмену имеют искусственные высокомолекулярные соединения - ионообменные смолы.
Химическими опреснителями ныне снабжены индивидуальные и коллективные аварийные укладки для летчиков и моряков во всем мире. С помощью одного такого комплекта ХО-2 можно, например, опреснить до 3,5 л морской или 1,5 океанской воды.
Однако ни солнечные дистилляторы, ни химические опреснители не могут кардинально решить проблему водообеспечения терпящих бедствие в океане. Поэтому усилия специалистов разных стран направлены на создание высокоэффективных устройств многоразового действия, которые могли бы снабдить людей необходимым количеством пресной воды в течение всего времени автономного плавания на спасательных плавсредствах. Одним из наиболее перспективных путей является создание так называемых селективных мембран, позволяющих задерживать при фильтрации соленой воды молекулы растворенных в ней солей. Такого рода мембраны в 80-х годах были изготовлены в университете английского города Уорвика из натриевоборосиликатного стекла с порами диаметром до двух миллионных частей миллиметра. С 1 кв. м такого стекла удавалось получать до 3,5 куб. м пресной воды за сутки (<Стекло фильтрует воду>).
Как же должен себя вести экипаж, оказавшийся на спасательной лодке или плоту в тропической зоне океана?
Не пить первые сутки после аварии, экономить пресную воду, помня, что 500 - 600 мл воды в сутки - рацион, которого хватит на 5 - 6 дней без особых последствий для организма. Находясь на открытой шлюпке, необходимо сделать самую примитивную теневую защиту от солнечных лучей. Смачивать в жаркое время суток одежду забортной водой, помогая организму сохранить внутренние резервы жидкости, но не забывать высушить ее до захода солнца. Ограничить до минимума физическую работу в жаркие дневные часы. Никогда, ни при каких обстоятельствах не пить морскую воду.
Поскольку прямые и отраженные солнечные лучи легко поражают чувствительные участки кожи вокруг губ, ноздрей, век, вызывая болезненные ожоги, все эти уязвимые места необходимо в дневное время смазывать солнцезащитным кремом или заклеивать липким пластырем. В яркие солнечные дни надежно защитят глаза от раздражения очки-светофильтры.
В апреле 1912 г. гигантский лайнер <Титаник>, следовавший из Ливерпуля в Нью-Йорк, столкнулся в Атлантическом океане с айсбергом и затонул. Прошло всего 1 час 50 минут, как спасательные суда, приняв сигнал бедствия, уже прибыли на место катастрофы. Они подняли на борт людей, находившихся на шлюпках. Но ни одного из 1489 пассажиров, оказавшихся в воде, спасти не удалось.
Из 720 погибших во время авиационных катастроф американских рейсовых самолетов за 10 лет (с 1954 по 1964 г.) 71 человек стал жертвой холодной воды.
Во время второй мировой войны 42% немецких летчиков, сбитых над арктическим водным бассейном, погибало от переохлаждения за 25 - 30 минут.
Известно, что организм человека, находящегося в воде, охлаждается, если ее температура ниже 33,3°. Однако даже наиболее теплые поверхностные воды Мирового океана в тропической зоне имеют температуру 29 - 30°. При этой температуре, по данным медицинского исследовательского института ВМФ в США, теплопотери обнаженного человека не являются ограничивающим фактором только в течение первых 24 часов. Вместе с тем более 77% поверхностных вод Атлантического океана, 62% - Индийского и 59% - Тихого имеют температуру ниже 25°. Следовательно, в подавляющем большинстве случаев время безопасного пребывания людей, оказавшихся в воде в результате тех или иных коллизий, будет ограничено скоростью охлаждения организма. Поскольку теплопроводность воды почти в 27 раз больше, чем воздуха, процесс охлаждения идет довольно интенсивно. Например, при температуре воды 22° человек за 4 минуты теряет около 100 калорий, т.е. столько же, сколько на воздухе при той же температуре за час. В результате организм непрерывно теряет тепло, и температура тела, постепенно снижаясь, рано или поздно достигнет критического предела, при котором невозможно дальнейшее существование.
Конечно, скорость этого процесса зависит не только от температуры воды. Важное значение будет иметь физическое состояние человека и его индивидуальная устойчивость к низким температурам, теплозащитные свойства одежды на нем, толщина подкожно-жирового слоя. Последнему фактору некоторые физиологи придают большое значение.
Так, путем экспериментальных исследований было установлено, что теплопроводность участка свежевырезанной поверхности ткани человека с жировой прослойкой 1 см составляет 14,4 ккал/кв. м/час/°С, теплопроводность участка, лишенного подкожно-жировой клетчатки, - 39,6 ккал/кв. м/ час/0С. Ученым удалось выявить линейную зависимость между скоростью охлаждения и толщиной подкожно-жировой клетчатки у человека.
Важная роль в активном снижении тепло-потерь организма принадлежит сосудосуживающему аппарату, обеспечивающему уменьшение просвета капилляров, проходящих в коже и подкожной клетчатке (Beck-man,Reevs, 1966).
Достаточно кратковременного пребывания в воде с низкой температурой, чтобы наступили отчетливые нарушения в деятельности организма. Так, у 124 испытуемых, помещенных в ледяную воду, через 240 секунд скорость восприятия снизилась с 4,3 + 0,1 до 2,9 +0,1 бит*. Скорость письма замедлилась с 51,3 + 1,3 до 221,9 + 18 секунд. При этом существенно изменился почерк, увеличилось число пропусков и повторений слов, удлинились разрывы между буквами (Чусов, 1977).
Уже при температуре воды 24° время безопасного пребывания измеряется всего 7- 9 часами, при 5 - 15° оно уменьшается вдвое. Температура 2 - 3° оказывается смертельной через 10 - 15 минут, а при минус 2° - не более 5 - 8 минут. Конечно, эти сроки не абсолютны и могут варьировать в ту или иную стороны. По данным Р. Мак-Кенса, во время морских катастроф, происшедших в районах с низкой температурой воды (минус 1,1-плюс 9°) , гибель матросов и пассажиров наступала в течение 5-2 0 минут. П. Вай-тингем, Е. Ферруджиа и другие считают, что при температурах 0 - 10° время безопасного пребывания ограничивается 20 - 40 минутами. Однако при отсутствии необходимой медицинской помощи жертвы кораблекрушений, добравшиеся до шлюпок, в 17% случаев погибают в последующие 8 - 12 часов от расстройств дыхания и кровообращения.
Основной причиной смерти людей в холодной воде является переохлаждение, так как тепла, вырабатываемого организмом, недостаточно, чтобы возместить теплопо-тери.
Однако смерть настигает человека, оказавшегося в холодной воде, иногда гораздо раньше, чем наступило переохлаждение. Причиной ее может быть своеобразный <хо-лодовый шок>, развивающийся иногда в первые 5 - 15 минут после погружения в воду, или нарушение функции дыхания, вызванное мас-сирным раздражением Холодовых рецепторов кожи. Крайне осложняет спасение человека в холодной воде быстрая потеря тактильной чувствительности. Находясь рядом со спасательной лодкой, терпящий бедствие иногда не может самостоятельно забраться в нее, так как температура кожи пальцев падает до температуры окружающей воды.
И в то же время можно привести примеры поразительной устойчивости человека к холодной воде.
1 марта 1895 г. Фритьоф Нансен и Фридрих Иогансен, покинув дрейфующий во льдах <Фрам>, отправились на лыжах к Северному полюсу. Встреченные на 80° с. ш. непроходимыми льдами, они повернули обратно. Перезимовав на одном из островов Земли Франца-Иосифа, путешественники двинулись на юг. После многодневнего пути по дрейфующим льдам они добрались до края ледяного поля. Между ними и ближайшей сушей лежали десятки миль чистой воды. Спустив на воду нарты-каяки, они только к вечеру пристали к льдине, чтобы поразмяться. Но не успели взобраться на торос, как вдруг Иогансен воскликнул: <Каяки уносит!> Путешественники бросились вниз, но каяки отплыли уже на несколько десятков метров и быстро удалялись.
- Держи часы! - крикнул Нансен, сбрасывая с себя на бегу одежду, чтобы легче было плыть.
Вот как описывает Ф. Нансен дальнейшие события:
<Снять с себя все я, однако, не рискнул, боясь закоченеть. Я прыгнул в воду и поплыл. Ветер дул со льда и без труда уносил каяки с их высокими снастями. Они отошли уже далеко и с каждой минутой уплывали дальше. Вода была холодная, как лед, плыть в одежде было очень тяжело, а каяки все несло и несло ветром, куда быстрее, чем я мог плыть. Казалось более чем сомнительным, чтобы мне удалось их догнать. Но вместе с- каяками уплывали все наши надежды: все наше достояние было сложено в каяках, мы не взяли с собой даже ножа. Так не все ли равно: пойду я, окоченев, ко дну или же вернусь назад без каяков?
Я напрягал все силы, устав, повернулся и поплыл на спине... С каждой минутой, однако, руки и ноги коченели, теряли чувствительность. Я понимал, что скоро уже не в силах буду двигать ими. Но теперь было не так далеко. Только бы выдержать еще немного, и мы будем спасены... И я держался. Вот наконец я смог достать одну из лыж, лежавшую поперек кормы. Я ухватился за нее, подтянулся к краю каяка и подумал: <Мы спасены>.
Затем я попытался влезть в каяк, но закоченевшее тело не слушалось меня. Через несколько секунд удалось-таки закинуть одну ногу за край стоявших на палубе нарт и кое-как вскарабкаться наверх. И вот я на каяке. Тело окоченело до такой степени, что я почти не в силах был грести... Я дрожал и стучал зубами, готовый потерять сознание, но продолжал все же работать веслами, смутно понимая, что смогу согреться к тому времени, когда пристану ко льду>.
Иогансен сделал все, что мог, чтобы согреть товарища, и скоро горячий суп из кайры изгладил все следы происшествия, чуть было не ставшего роковым для героических норвежцев.
В литературе описано немало случаев длительного пребывания человека в холодной воде при температуре, близкой к нулю, без каких-либо серьезных последствий от переохлаждения.
В ноябре 1962 г. летчик И. Т. Куницын, катапультировавшийся после аварии самолета над Баренцевым морем, в течение 12 часов греб руками, добираясь до ближайшего островка на спасательной надувной лодке. Не обнаружив на нем никаких средств для поддержания жизни, он снова отправился в путь, продолжавшийся около 40 часов. Несмотря на низкую температуру воздуха и воды (4 - 6°) , мокрую одежду, у него на третьи сутки после спасения было установлено лишь умеренное общее охлаждение организма, ознобление и отморожение первой степени верхних и нижних конечностей.
Еще более поразительным является случай с летчиком Валентином Смагиным, который академик АМН СССР Г.Сидоренко отнес к <исключительным в медицинской практике. И исключительность эта, без сомнения, следствие необычайных волевых качеств офицера>.
Заполярная осень уже вступила в свои права. Экипаж, выполнив задание, возвращался на свой аэродром. Вдруг в наушниках коротко, как удар хлыста, прозвучал дважды повторенный приказ командира:
<Второму штурману покинуть самолет!> Часы показывали 21 час 40 минут, когда катапультное кресло вышвырнуло летчика из теплой уютной кабины самолета в промозглый мрак сентябрьской ночи. Отошло кресло. С шелестом раскрылся парашютный купол.
Смагин пристально всматривался вниз, пытаясь различить хоть единый огонек. И лишь когда до <земли> остались считанные метры, он понял: под ним - море. Это было Белое море - суровое, безжалостное.
Смагин погрузился в его студеные волны. От обжигающего холода захватило дыхание. Захлебываясь горько-соленой водой, он выплыл на поверхность, поддул спасательный жилет и, нащупав коченеющими руками замок подвесной системы, нажал фиксатор. Порыв ветра сорвал подвесную систему. Стало легче держаться на воде. Отдышавшись, он подтянул за фал спасательную лодку. Но взобраться в нее в намокшей, ставшей скользкой кожаной куртке оказалось непросто. Пришлось снять с себя надувной жилет, сбросить куртку, оставшись в легком комбинезоне. Лишь после этого удалось влезть в маленькую резиновую лодочку. Сильный порывистый ветер гнал ее по бурному морю к еще невидимому во мраке берегу. Крутые волны то и дело переворачивали лодку, и ему каждый раз приходилось взбираться в нее. Два, пять, десять. Смагин уже потерял счет этим ледяным купаниям. Он уже почти не чувствовал холода. Но решил: не сдаваться, бороться за жизнь, пока есть хоть капля сил, и без перерыва греб и греб онемевшими от холода руками. Неожиданно огромная волна опрокинула лодку и унесла в темноту. Казалось, теперь - конец. Но вдруг ноги зацепили дно. Значит, берег где-то совсем близко (впоследствии определили, что до него оставалось еще 200 м) .
Он продвигался вперед, то стараясь плыть, то отталкиваясь от дна ногами. Перед глазами вспыхивали белые круги, он почти терял сознание, но, собрав в комок всю волю, приказывал себе: вперед!
Неподалеку приветливо светился желтый глаз рыбацкой избушки. Он дополз до порога и упал без памяти.
Супруги Гундаревы сделали все возможное, чтобы спасти героя-летчика. Почти семь часов находился Смагин в воде, температура которой была всего шесть градусов выше нуля, а воздуха - плюс пять. Семь часов борьбы со стихиями! Каким беспримерным мужеством должен обладать человек, чтобы выдержать это страшное испытание холодом и ежеминутным ожиданием гибели!
Какие же могучие резервы таит в себе организм, если вызвать их к жизни несгибаемой человеческой волей!
Как себя вести, оказавшись в холодной воде: стараться сохранить неподвижность или согреваться активными плавательными движениями? Основываясь на экспериментальных данных, некоторые ученые рекомендуют активную физическую деятельность, считая, что этим можно в течение определенного времени компенсировать теплопотери за счет увеличения теплопродукции. Другие полагают, что поддержание теплового баланса таким способом можно рекомендовать только людям, одетым в специальное защитное снаряжение - скафандры, спасательные гидрокостюмы и тому подобное. При этом уровень физической активности должен создавать прирост теплопродукции примерно 190 ккал/час за счет мышечного напряжения. В ином случае происходит быстрое охлаждение периферических отделов организма, и в первую оче-редь конечностей. Теоретически такая физическая нагрузка может предотвратить падение температуры тела за счет увеличения теплопродукции. Однако исследования показали, что при активных плавательных движениях наряду с увеличением теплопродукции нарастают и теплопотери. В результате энергетические резервы организма окажутся израсходованными значительно быстрее. Особенно интенсивно этот процесс протекает у людей худощавых, со слаборазвитой подкожно-жировой клетчаткой.
Одна из причин быстрого понижения температуры тела - перемещение прилежащего к телу, подогретого им слоя воды и замена его новым, холодным. Кроме того, при движениях нарушается дополнительная изоляция, создаваемая водой, пропитавшей одежду. Вот почему активные плавательные движения рекомендуются лишь в тех случаях, когда расстояние до берега или до спасательного средства можно преодолеть минут за 20 - 40 без полного истощения тепловых резервов.
Людям, оказавшимся в результате морской или воздушной катастрофы в холодной купели, придется нелегко. И все же выполнение некоторых правил может несколько замедлить наступление гипотермии и этим способствовать увеличению сроков безопасного пребывания в воде с низкими температурами, а следовательно, повысить вероятность спасения. Находясь на плаву, следует голову держать как можно выше над водой, ибо известно, что более 50% всех теплопотерь организма, а по некоторым данным, даже 75% приходится на ее долю. Удерживать себя на поверхности воды, стараясь затрачивать на это минимум физических усилий. Активно плыть к берегу, плоту или шлюпке, если они находятся на расстоянии, преодоление которого потребует не более 40 минут. Добравшись до плавсредства, надо немедленно раздеться, выжать намокшую одежду и снова надеть. Для согревания использовать любые пригодные для этой цели вещи. Летчик, например, может воспользоваться тканью парашютного купола, предварительно отжав ее. По возможности дно надувной лодки или плотика застилают парашютной тканью или укладывают что-либо из снаряжения, чтобы лучше изолировать себя от охлаждающего действия воды. Время от времени рекомендуется разогреваться, выполняя физические упражнения или напрягая попеременно мышцы ног, живота, рук.
Для расчета времени безопасного пребывания человека в воде с различной температурой американские физиологи Г.Смит и Е. Хэмс составили номограмму (рис. 130), учитывающую массу человека, величину теплообразования, площадь тела, погруженного в воду, теплоизоляцию одежды и, наконец, температуру воды.
В примере, обозначенном на номограмме сплошной линией, человек (Кт-0,3 кло), находящийся в воде с температурой 4°, теряет 610 ккал/кв. м/час (Кк/а). При теплопродукции (М/А) 400 ккал /кв. м/час дефицит тепла (Ц/А) составит 210 ккал/кв. м/час. При массе (В) 80 кг и площади тела (А) 1,75 кв. м уменьшение теплосодержания организма (Д) должно составлять 365 ккал/кв. м/час, а температура тела будет снижаться на 6° за один час. Если считать предельно допустимой температурой температуру тела 31°, то время безопасного пребывания будет около часа.
Для прогнозирования физиологических реакций организма и теплового состояния человека в условиях холода французские ученые разработали оригинальную математическую модель. Экспериментальная проверка модели показала, что она хорошо учитывает взаимосвязь между температурой воздуха и воды, влажностью и скоростью движения воздуха, барометрическим давлением и морфологическими особенностями организма - толщиной жировой складки, ростом и весом.
Первая помощь людям, извлеченным из воды, направлена в первую очередь на быстрейшее восстановление температуры тела, активное согревание всеми имеющимися средствами.
Пострадавших следует растереть спиртом до покраснения кожи и тщательно укутать в любую имеющуюся под руками сухую одежду. Если есть возможность согреть хоть немного воды, резиновые фляги, заполненные ею, кладут на грудную клетку и живот.
Как указывалось выше, прием алкоголя внутрь нецелесообразен, поскольку он угнетает высшие отделы центральной нервной системы.
Если помощь оказывается медицинским персоналом поисково-спасательной команды, имеющим в своем распоряжении резиновые ванночки (в качестве ванночек можно использовать надувные спасательные лодки) и запас горячей воды, самым эффективным способом является быстрое отогревание охлажденных в горячей ванне с температурой 36 - 40°. Таким методом было спасено 70 из 73 человек, доставленных в клинику в состоянии тяжелого охлаждения. Отогревать пострадавшего начинают в воде с температурой 34-36° , постепенно повышая ее до 40°. Процедура прекращается после того, как температура тела поднялась до 34°.
Для ускорения согревания тела пострадавшего кожные покровы необходимо растирать мягкими мочалками. Одновременно проводится интенсивная медикаментозная терапия. Внутривенно вводятся: 60 - 80 мл 40%-ного раствора глюкозы для восполнения энергетических ресурсов организма; 10 мл 10%-ного раствора хлористого кальция и 1 - 2 мл 20%-ного раствора димедрола для предупреждения электролитных расстройств и десенсибилизации организма; 200 - 230 мл 5%-ного раствора бикарбоната натрия, витамины В1, В2 и другие для предупреждения нарушений и корреляции кислотно-щелочного равновесия (Инструкция по оказанию медицинской помощи..., 1982).
Во время автономного плавания на спасательной лодке или плоту нередко у людей в результате долгого пребывания в вынужденной позе, постоянного охлаждения появляются судороги мышц живота, нижних конечностей. Они болезненны, но безопасны и легко устраняются быстрым растиранием сведенных мышц, активными движениями пальцев, стоп.
Аварийные пищевые рационы, предназначенные для экипажей, совершающих полеты над акваториями, так же как и рационы, используемые моряками, должны не только компенсировать часть энерготрат, но и способствовать экономии жидкости в организме. По мнению гигиенистов и физиологов, в наибольшей степени этому требованию соответствуют рационы, состоящие из одних углеводов - сахара, леденцов, мармелада и т. п.
Например, американский физиолог М.Хо-кинс считает, что 100 г углеводов в сутки обеспечивают без каких-либо обменных нарушений экономию белков и воды в течение пяти суток.
По данным Всемирной организации здравоохранения, рацион из 100 г углеводов и 500 мл воды в сутки обеспечивает жизнедеятельность организма в условиях плавания на спасательной шлюпке в течение пяти суток.
Co времени второй мировой войны аварийные пищевые рационы для морской авиации создавались главным образом из продуктов, содержащих углеводы. На этом принципе был скомплектован аварийный паек для немецких летчиков, состоявший из шоколада, сухарей и таблеток декстрозы, а также голландский, включавший в себя 760 г концентрата кексовой муки в таблетках и 350 г таблетированной глюкозы. А например, в английский пятисуточный морской рацион входят 500 г карамели, 50 г конфет с 30%-ной добавкой жира, 500 г сгущенного молока и 500 г галет.
Интересные данные получили Л. Н. Кома-ревцев и другие, изучавшие влияние малокалорийного углеводного питания на организм человека в условиях четырехсу-точного автономного плавания на плотах ПСН-6.
Заключительное обследование показало, что, несмотря на существенную потерю массы тела (3,7-4,0 кг) , испытуемые, питавшиеся рационом из 150 г карамели и сахара (600 ккал/сутки) с добавкой витаминного комплекса при водопотреблении 0,5 л/сутки, сохраняли удовлетворительное самочувствие. У них отмечался также более нормализованный белковый обмен по сравнению с группой, получавшей концентраты, хлеб и масло (1700 ккал/сутки).
Однако данные, полученные отечественными и зарубежными исследователями, все же не дают четкого ответа на ряд вопросов, имеющих существенное значение для всесторонней сравнительной оценки углеводного и смешанного питания. В связи с этим в 1977 г. нами были проведены специальные эксперименты.
Две группы испытуемых находились в течение 7 суток на надувных плотах при t воздуха 15 - 26° и влажности воздуха 46 - 95%. I группа питалась смешанным рационом, II - состоящим из одних углеводов (карамели).