Методические указания по теме. Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного
Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.
Для анализа распределения студентов по возрасту требуется: 1) построить интервальный ряд распределения и его график; 2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации; 3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.
Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n):
n = 1 +3,322 lg N, (10)
где N – число величин в дискретном ряде.
В нашей задаче n = 1 + 3,322lg25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.
После определения оптимального количества интервалов определяем размах интервала по формуле:
h = H / n, (11)
где H – размах вариации, определяемый по формуле (12).
H = Хмах –Хmin, (12)
где Xмax и Xmin — максимальное и минимальное значения в совокупности.
В нашей задаче h = (29 – 19)/6 = 1,67.
Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.
Таблица 1 – Вспомогательные расчеты для решения задачи
Xi , лет | fi | ХИ | XИfi | ХИ- | (ХИ- )2 | (ХИ- )2fi | (ХИ- )3 fi | (ХИ- )4 fi | |
20-20,67 | 19,833 | 237,996 | -2,134 | 25,602 | 4,552 | 54,623 | -116,539 | 248,638 | |
20,67-22,33 | 21,5 | 86,000 | -0,467 | 1,866 | 0,218 | 0,871 | -0,406 | 0,189 | |
22,33-24 | 23,167 | 69,501 | 1,200 | 3,601 | 1,441 | 4,323 | 5,190 | 6,231 | |
24-25,67 | 24,833 | 74,499 | 2,866 | 8,599 | 8,217 | 24,650 | 70,659 | 202,543 | |
25,67-27,33 | 26,5 | 53,000 | 4,533 | 9,067 | 20,552 | 41,105 | 186,348 | 844,806 | |
27,33-29 | 28,167 | 28,167 | 6,200 | 6,200 | 38,446 | 38,446 | 238,383 | 1478,091 | |
Итого | — | 549,163 | — | 54,937 | — | 164,018 | 383,636 | 2780,498 |
На основе этой группировки строится график распределения возраста студентов (рисунок 2).
Рисунок 2 – График распределения возраста студентов
Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):
, (13)
где ХMo – нижнее значение модального интервала; fMo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; fMo-1 – то же для интервала, предшествующего модальному; fMo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах.
В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста:
Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).
Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:
, (14)
где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; fMe – число наблюдений или объем взвешивающего признака в медианном интервале.
В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста. Используя формулу (14), определяем точное значение медианного возраста:
Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).
Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (несгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).
= ; (15) = .(16)
При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин. Используя формулы (15) и (16) при разных показателях степени m, получаем частные формулы каждого вида (см. таблицу 2).
Таблица 2. Виды степенных средних и их применение
m | Название средней | Формула расчета средней | Когда применяется | |
простая | взвешенная | |||
Арифметическая | = (17) | = (18) | Чаще всего, кроме тех случаев, когда должны применяться другие виды средних | |
–1 | Гармоническая | ГМ = (19) | ГМ = (20) | Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности |
Геометрическая | (21) | (22) | Для осреднения цепных индексов динамики | |
Квадратическая | = (23) | = (24) | Для осреднения вариации признака (расчет средних отклонений) | |
Кубическая | = (25) | = (26) | Для расчета индексов нищеты населения | |
Хронологическая | (27) | (28) | Для осреднения моментных статистических величин |
Выбор вида формулы средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять. Показатель степени m в общей формуле средней величины оказывает существенное влияние на значение средней величины: по мере увеличения степени возрастает и средняя величина (правило мажорантности средних величин), то есть < < < < . Так, если , то , а если , то .
В нашей задаче, применяя формулу (18) и подставляя вместо середины интервалов возраста ХИ, определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.
Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.
Среднее линейное отклонение определяется по формулам (29) и (30):
–простое; (29) – взвешенное. (30)
Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):
. (31)
Дисперсия определяется по формулам (32) или (33):
–простая; (32) –взвешенная. (33)
В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации: = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).
Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года).Разделив это значение на средний возраст, получим квадратический коэффициент вариации: = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).
В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):
,(34) .(35)
Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.
В нашей задаче = =383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.
Для характеристики крутизны распределения используется центральный момент 4-го порядка:
= .(36)
Для образования безразмерной характеристики определяется нормированный момент 4-го порядка , который и характеризует крутизну (заостренность) графика распределения. При измерении асимметрии эталоном служит нормальное (симметричное) распределение, для которого =3. Поэтому для оценки крутизны данного распределения в сравнении с нормальным вычисляется эксцесс распределения (37):
.(37)
Для приближенного определения эксцесса может быть использована формула Линдберга (38):
,(38)
где – доля количества вариант, лежащих в интервале, равном половине (в ту и другую сторону от средней величины).
В нашей задаче числитель центрального момента 4-го порядка рассчитан в последнем столбце расчетной таблицы. В итоге по формуле (37) имеем: Ex = (2780,498/25)/2,5614–3 = 111,220/43,017–3 = -0,415. Так как Ex<0, то распределение низковершинное. Это подтверждает и приблизительный расчет по формуле (38): в интервале 21,967 0,5*2,561, то есть от 20,687 до 23,248 находится примерно 21,4% студентов. Таким образом, Ex = 0,214 – 0,3829 = –0,169.