Системы тока и напряжение в контактной сети
Первой в мире в 1895 году была электрифицирована железная дорога Балтимор – Огайо (США) протяженностью 115 км. На ней электрическая энергия постоянного тока передавалась на электровоз не по контактному проводу, который появился значительно позднее, а по третьему рельсу, расположенному между двумя ходовыми рельсами. Напряжение постоянного тока в третьем рельсе было такое же, как и на тяговых двигателях – 650 В. Двигатели были тихоходными, громоздкими, имели низкий коэффициент полезного действия.
Еще в середине прошлого века русский физик Д. А. Лачинов установил, что чем выше напряжение в электрической цепи, тем меньше потери энергии при передаче ее на расстояние. Поэтому стремятся иметь в контактной сети возможно более высокое напряжение, изыскивая экономичные способы преобразования его до значения, подходящего для питания тяговых двигателей.
Дальнейшее развитие электрификации на постоянном токе шло по пути повышения напряжения в контактной сети. Во Франции и Англии в 20-х годах ХХ столетия железные дороги электрифицировали на постоянном токе напряжением 1200 и 1500 В. Впоследствии на французских дорогах перешли в основном на напряжение 3000 В. Однако такое напряжение не является оптимальным ни для тяговых двигателей, ни для системы электроснабжения. Для двигателей оно велико, так как приемлемые масса, габаритные размеры и наименьшая стоимость получаются при напряжении порядка 900 В. Для системы электроснабжения напряжение 3000 В мало, так как при этом требуется располагать тяговые подстанции относительно часто – на расстоянии 20–25 км друг от друга. Тем не менее, это напряжение применяется на дорогах постоянного тока при питании тяговых двигателей непосредственно от контактной сети.
Указанные недостатки определили высокую стоимость системы электроснабжения на постоянном токе.
Между тем переменный ток в отличие от постоянного обладает следующим важным свойством: его напряжение можно изменять достаточно просто. Для этого необходим трансформатор, т. е. устройство, не имеющее подвижных частей и содержащее две обмотки – первичную и вторичную с заранее рассчитанными числами витков. На первичную обмотку подается имеющееся напряжение, с вторичной обмотки снимается требуемое.
Возможность использования высокого напряжения в контактной сети дорог переменного тока, что ведет к уменьшению потерь энергии в процессе передачи ее на электроподвижной состав, и последующего понижения его до значения, приемлемого для тяговых двигателей, позволяет существенно снизить стоимость электрификации железных дорог. Однако при этом усложняется устройство электроподвижного состава (ЭПС), так как приходится иметь на нем регулируемый преобразователь переменного тока в постоянный, поскольку до сих пор не создан надежный и экономичный тяговый двигатель переменного тока.
Конструкция токоприемников и ЭПС в целом была очень громоздкой. Опыт эксплуатации выявил существенные недостатки принятой системы тока, которые заключались в трудности регулирования частоты вращения асинхронных двигателей ЭПС, а в области электроснабжения – в обеспечении надежной работы трехфазной контактной сети, особенно на воздушных стрелках, представляющих собой изолированные пересечения контактных проводов разных фаз. Поэтому, несмотря на простоту трехфазных трансформаторных тяговых подстанций и надежность работы бесколлекторных асинхронных двигателей на электровозах, система трехфазного тока для тяги распространения не получила. На дорогах Италии она заменена системой 3000 В постоянного тока.
Система тяги на однофазном токе с применением тяговых коллекторных двигателей на электрическом подвижном составе возникла в начале XX в. При этом в первое время применяли пониженную, а в дальнейшем промышленную (нормальную) частоту питающего тока. На ряде участков электрифицированных железных дорог Франции, Турции и Конго эксплуатируются коллекторные двигатели переменного тока, работающие на частоте 50 Гц. Однако они являются более дорогими и менее надежными, чем двигатели постоянного тока, вследствие чего такие двигатели применяют преимущественно на пассажирском электроподвижном составе. Использование пониженной частоты было вызвано необходимостью обеспечить удовлетворительную работу коллекторных двигателей.
Однако в этом случае требуется сооружение специальных электрических станций для питания ЭПС или дорогостоящих преобразовательных подстанций. В первом случае тяговые подстанции представляют собой простейшие трансформаторные установки. По этому пути развивалась электрификация железных дорог в Германии, Австрии, Швейцарии и Норвегии, где железные дороги имеют собственные электрические станции, вырабатывающие электрическую энергию при частоте 162/3 Гц, и в США, где используется электроэнергия частоты 25 Гц. Питание электрических дорог от общих трехфазных систем через специальные тяговые подстанции, преобразующие трехфазный ток нормальной частоты в однофазный ток пониженной частоты, применено в Швеции.
Электрификация железных дорог СССР начиналась на постоянном токе с напряжением в контактной сети 1,2 – 1,5 кВ на пригородных участках и 3 кВ на магистральных. В последние десятилетия развитие электрификации в основном осуществляется на однофазном переменном токе с напряжением в контактной сети 25 кВ, а теперь еще и по системе 2х25 кВ. Линии постоянного тока, работавшие при более низком напряжении, переведены на 3 кВ, за исключением узкоколейного участка от Боржоми до Бакуриани (42 км), где используются импортные электровозы, рассчитанные на питание от сети напряжением 1,5 кВ.
В бывшем СССР осуществлялась комплексная электрификация, т. е. электрификация не только железных дорог, но и прилегающих районов. Поэтому сооружать специальные электрические станции или преобразовательные подстанции для получения тока пониженной частоты экономически нецелесообразно.
При тяге на однофазном токе промышленной частоты на сооружение устройств электроснабжения железных дорог требуются наименьшие капиталовложения по сравнению с другими системами тока, но возникают трудности с созданием простых и надежно работающих электровозов. Преодоление этих трудностей, заключающихся в большой сложности устройств преобразования энергии на ЭПС для питания тяговых двигателей, шло по пути разработок электровозов однофазного тока со статическими преобразователями.
Технико-экономический анализ и опыт эксплуатации электровозов однофазного тока различных типов показали, что наиболее экономичным и надежным является электровоз со статическими преобразователями переменного тока в постоянный (пульсирующий) для питания тяговых двигателей. Поэтому такую систему тяги называют также системой однофазно-постоянного (пульсирующего) тока, подчеркивая условия работы тяговых двигателей.
Статические ртутные преобразователи использовались на ЭПС примерно до середины ХХ столетия. Затем они уступили место силовым кремниевым полупроводниковым преобразователям.
Термин полупроводники – исторически сложившаяся условность и никак не отражает свойств этих элементов. Дело в том, что долгое время материалы делили на две группы – проводники электрического тока и диэлектрики, т. е. непроводники, изоляторы. Сравнительно недавно (в первой половине ХХ столетия) было установлено, что такие элементы, как германий, кремний и т. п., обладают удивительным свойством – пропускают переменный ток в одном направлении и не пропускают его в направлении, противоположном (обратном) из-за ничтожной проводимости. Их-то и назвали полупроводниками с тем, чтобы не менять уже сложившееся деление материалов на группы проводников и диэлектриков.
Установки, собранные из полупроводниковых элементов, часто называют из-за их односторонней проводимости выпрямительными, хотя в действительности они никакого «выпрямления» переменного напряжения и тока не производят.
Полупроводники, обладая свойством односторонней проводимости, способствовали бурному развитию преобразовательной техники, открыли совершенно новые возможности использования электрической энергии вообще и в системах электрической тяги в частности.
На базе второго поколения полупроводников – управляемых силовых кремниевых элементов, называемых тиристорами, были созданы импульсные системы управления режимами работы ЭПС. В таких системах электрическая энергия поступает к тяговым двигателям не непрерывно, а отдельными быстро следующими друг за другом короткими порциями – импульсами, что существенно расширяет регулировочные возможности ЭПС.
Наиболее совершенные из этих систем построены на базе микропроцессорной техники, т. е. программно-управляющих устройств, содержащих требуемый набор микрокоманд, которые определяют заданную последовательность выполнения элементарных операций. Эти устройства позволяют значительно повысить тягово-энергетические показатели ЭПС и электрической тяги в целом.
К 1 января 1988 г. электрифицированные железные дороги эксплуатировались в 52 государствах.
Электрификация железных дорог, являясь составной частью электрифи-
кации всего народного хозяйства, увеличивает пропускную и провозную способность железнодорожных линий, улучшает топливно-энергетический баланс страны, повышает производительность труда и общую культуру работы железнодорожников. Особенно ярко достоинства электрической тяги проявляются при её реализации на большом протяжении.
В странах СНГ протяженность железных дорог, электрифицированных по обеим системам тока, превышает 53 тыс. км. Установлен номинальный уровень напряжения на токоприемниках ЭПС: 3 кВ при постоянном и 25 кВ при переменном токе.
Основными параметрами системы электроснабжения электрифицированных железных дорог являются мощности тяговых подстанций, расстояние между ними и площадь сечения контактной подвески. Нагрузочная способность важнейших элементов электроснабжения (трансформаторов, выпрямителей, контактной сети) зависит от допускаемой температуры их нагрева, определяемой значением и длительностью протекающего тока.
Тяговые подстанции на электрифицированных дорогах постоянного тока выполняют две основные функции: понижают напряжение подводимого трехфазного тока и преобразуют его в постоянный ток. Для этой цели используют трансформаторы, выпрямители и другое оборудование. Широко применяют полупроводниковые выпрямители, которые обладают высокой надежностью, простотой устройства, обслуживания и управления, компактностью. Все оборудование переменного тока размещают на открытых площадках тяговых подстанций, а выпрямители и вспомогательные агрегаты – в закрытых помещениях. От тяговых подстанций электроэнергию по питающим линиям подают в контактную сеть. Относительно низкое напряжение (3 кВ) является основным недостатком системы постоянного тока, вследствие чего по контактной сети к электроподвижному составу подводится мощность (равна произведению напряжения на ток) с большим тяговым током. Для поддержания нужного уровня напряжения на токоприемниках локомотивов тяговые подстанции размещают близко друг от друга (10–20 км), а для передачи больших токов приходится увеличивать площадь сечения проводов контактной подвески.
При росте грузооборота строят дополнительные тяговые подстанции, увеличивают площадь сечения контактной сети (подвешивают усиливающие провода и др.), чтобы повышение числа и массы поездов не вызывало резкого падения напряжения и, следовательно, скоростей движения поездов. Радикальным способом устранения недостатков электроснабжения постоянного тока является создание системы регулирования напряжения в контактной сети.
Увеличение мощности в контактной сети за счет значительного повышения напряжения постоянного тока требует изготовления и эксплуатации тяговых двигателей, рассчитанных на более высокое напряжение, что связано с большими трудностями (сильно усложняется изоляция электрического оборудования, возникает опасность пробоя ионизированного слоя воздуха и др.).
Система однофазного тока напряжением 25–28 кВ широко применяется для тяги поездов на железных дорогах стран СНГ. Переменный ток дает возможность значительно повысить технико-экономические показатели электрической тяги благодаря тому, что по контактной сети передается мощность при меньших токах по сравнению с системой постоянного тока, и обеспечивает движение тяжеловесных поездов с установленными скоростями при высокой грузонапряженности линий. Тяговые подстанции в этом случае размещают на расстоянии 40–60 км друг от друга. Они являются по существу трансформаторными подстанциями, понижающими напряжение с 110– 220 до 25 кВ. Поскольку на этих подстанциях переменный ток не преобразуют в постоянный, то они не имеют выпрямительных агрегатов и связанного с ними вспомогательного оборудования. Их устройство и обслуживание значительно проще и дешевле тяговых подстанций постоянного тока. Все оборудование таких подстанций размещают на открытых площадках, но электроподвижной состав переменного тока сложнее.
Повышение напряжения позволило бы уменьшить потери напряжения и электроэнергии и увеличить расстояние между тяговыми подстанциями, однако, это связано с большими затратами на усиление изоляции, замену электроподвижного состава и др. Для улучшения показателей электрификации на переменном токе разработана система 2х25 кВ с промежуточными автотрансформаторами, размещаемыми на расстоянии 8–15 км друг от друга. От тяговых подстанций к автотрансформаторам электроэнергия напряжением 50 кВ подводится по контактной подвеске и дополнительному питающему проводу. Далее от автотрансформаторов к электроподвижному составу энергия подается с напряжением 25 кВ.
Применение системы электроснабжения 2х25 кВ не вызывает изменений в электроподвижном составе, но ее недостатком является необходимость подвески специального питающего провода.
На участках переменного тока работают локомотивы со статическими преобразователями и двигателями пульсирующего тока. Созданы опытные образцы мощных электровозов с бесколлекторными двигателями – асинхронными и вентильными.
Важным преимуществом подвижного состава переменного тока является возможность его совершенствования за счет применения тиристорных преобразователей, электронных систем управления и др.
Переменный ток оказывает электромагнитное влияние на металлические сооружения и коммуникации, расположенные вдоль железнодорожных путей. В результате на них наводится опасное напряжение, а в линиях связи и автоматики возникают помехи. Поэтому применяют особые меры защиты сооружений, а воздушные линии связи заменяют на кабельные или радиорелейные и реконструируют автоматику. На это расходуется около 20–25 % общей стоимости электрификации. Неотъемлемой частью устройств электроснабжения электрифицированных железных дорог являются средства автоматики и телемеханики.
Стыкование линий, электрифицированных на постоянном и переменном токе, осуществляют по контактной сети на специально оборудованных железнодорожных станциях стыкования или используют электровозы двойного питания, которые работают и на постоянном и на переменном токе.
Тяговые подстанции. В систему тягового электроснабжения входят многочисленные и разнообразные установки – тяговые подстанции, посты секционирования, пункты параллельного соединения контактных сетей двух путей, установки для компенсации реактивной мощности при переменном токе, устройства для повышения напряжения при постоянном токе и др. Наиболее сложными из них являются тяговые подстанции. В соответствии с родом тока, подаваемого в контактную сеть, различают подстанции постоянного и переменного тока. Иногда в местах стыкования участков, электрифицированных на различных системах тока, располагают подстанции постоянно-переменного тока – стыковые подстанции.
Тяговые подстанции подключают к ЛЭП системы внешнего электроснабжения, имеющим различное напряжение (от 6 до 220 кВ). Они могут быть опорными, промежуточными (транзитными и отпаечными) и тупиковыми. Иногда тяговые подстанции совмещают с подстанциями внешней энергосистемы, в некоторых случаях – с дежурными пунктами контактной сети. Как правило, тяговые подстанции строят стационарными с открытыми и закрытыми распределительными устройствами (РУ), однако бывают и передвижные подстанции, которые можно перемещать с одного места работы на другое.
На первых тяговых подстанциях постоянного тока в Закавказье и на Урале устанавливали вращающиеся преобразователи переменного тока в постоянный (мотор-генераторы). Впоследствии их повсеместно вытеснили статические преобразователи – ртутные выпрямители. Бурное развитие полупроводниковой техники не обошло и электрические железные дороги. Начиная с 1964 г. громоздкие и недостаточно надежные ртутные выпрямители начали заменять на полупроводниковые; последний ртутный выпрямитель был демонтирован в 1972 г.
Тяговые подстанции имеют довольно сложные электрические цепи. Главные из них рассмотрим применительно к тяговой подстанции переменного тока 25 кВ (опорной) и тяговой подстанции постоянного тока 3 кВ (транзитной). Стыковые тяговые подстанции отдельно рассматривать не будем, так как их электрические цепи включают в себя цепи подстанций постоянного и переменного тока.