Часть ii. непараметрические методы
Глава 3. Задача сопоставления и сравнения.
Критерии различий.
Очень часто перед исследователем в социологии стоит задача выявления различий между двумя, тремя и более выборками. Полученные данные в результате решения этой задачи мы вправе распространить на генеральные совокупности, из которых были получены эти выборки. Это может быть, например, задача выявления различий между работниками государственных предприятий, частных предприятий и частных фирм, между людьми разных национальностей и культуры и т.д. По выявлению в исследовании статистически достоверных различий формируется собирательный образ человека той или иной профессии, социального статуса.
Сопоставление уровней показателей в разных выборках может быть необходимой частью комплексных социальных программ. Критерии, рассматриваемые в этой главе, предполагают сопоставление независимых выборок.
Q - критерий Розенбаума
Назначение критерия. Q – критерий используется для оценки различий между двумя выборками по уровню признака, измеренного количественно.
Ограничения критерия:
а) В каждой из сопоставляемых выборок должно быть не менее 11 наблюдений.
б) Диапазоны разброса значений в двух выборках не должны совпадать между собой, в противном случае применение критерия бессмысленно.
Гипотезы:
: Уровень признака в выборке 1 не превышает уровня признака в выборке 2.
: Уровень признака в выборке 1 превышает уровень признака в выборке 2.
Алгоритм подсчета критерия
1. Проверить, выполняются ли ограничения: n1, n2 ≥ 11; (n1 и n2 – объем 1 и 2 выборки соответственно).
2. Упорядочить значения отдельно в каждой выборке по возрастанию значения признака, считать выборкой 1 ту выборку, значения в которой предположительно выше, чем в другой.
3. Определить максимальное значение в выборке 2.
4. Подсчитать количество значений в выборке 1, которые больше максимального значения в выборке 2. Обозначить полученную величину S1.
5. Определить минимальное значение в выборке 1.
6. Подсчитать количество значений в выборке 2, которые меньше минимального значения в выборке 1. Обозначить полученную величину S2.
7. Подсчитать полученное эмпирическое значение критерия по формуле:
8. По таблице критических значений - критерия Розенбаума определить критическое значение для данных n1 и n2 и уровня значимости α.
9. Сопоставить полученное эмпирическое значение с . Если превышает , то нулевая гипотеза отвергается, в противном случае принимается.
Пример. В рамках социальной программы повышения престижа семьи и профилактики разводов были подсчитаны количества разводов в двух группах – людей, вступивших в брак до 25 лет, и вступивших в брак после 25- летнего возраста. Данные за 13 лет (с 1995 года по 2007 год) представлены в таблице 1. Можно ли утверждать, что одна из групп превосходит другую по количеству разводов?
Таблица 1
Год | Количество разводов | |
до 25 лет | после 25 лет | |
Решение.Упорядочим значение в обеих выборках, а затем сформулируем гипотезы. : люди, вступившие в брак до 25-летнего возраста, не превосходят по количеству разводов пары, заключившие брак после 25 лет. : среди пар, вступивших в брак до 25 лет разводов больше.
Упорядоченные по возрастанию ряды значений количества разводов по годам в двух выборках представлены в таблице 2.
Таблица 2
1 ряд –пары до 25 лет | 2 ряд – пары после 25 лет | ||
| |||
| |||
640 |
По таблице 2 определяем количество значений первого ряда, которые больше максимального значения второго ряда: . Теперь определим количество значений второго ряда, которые меньше минимального значения первого ряда: . Вычислить по формуле . По таблице критических значений – критерия Розенбаума (таблица I приложения) определяем критическое значение для и α = 0,01. = 9 (α = 0,01). Получим < , следовательно, принимается.