Глава 1. логика социологического исследования
ГЛАВА 1. ЛОГИКА СОЦИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ
ГЛАВА 2. ВКЛЮЧЕННОЕ НАБЛЮДЕНИЕ
Что такое включенное наблюдение? Включенное наблюдение и этнографический метод:
ГЛАВА 3. БИОГРАФИЧЕСКИЙ МЕТОД
ГЛАВА 4. ЭКСПЕРИМЕНТ В СОЦИАЛЬНЫХ НАУКАХ
Эксперимент—это опытное исследование воздействия отдельного фактора (или нескольких факторов) на интересующую исследователя переменную. Экспериментальное исследование строится в соответствии с правилами индуктивного вывода о наличии причинно-следственной связи между событиями, во-первых, демонстрируя регулярный характер появления события-«отклика» после предшествующего по времени события-воздействия и, во-вторых, исключая посредством особых приемов экспериментальной изоляции и контроля альтернативные объяснения появления «отклика» с помощью посторонних влияний и конкурирующих каузальных гипотез '. Соответственно данные экспериментального исследования представляют собой наилучшее приближение к модели статистического вывода о наличии причинной взаимосвязи между воздействием и «откликом» или, в более привычных терминах, между независимой и зависимой переменными.
В главах, посвященных массовым опросам и статистическому анализу результатов социологического исследования, обсуждаются возможности и ограничения неэкспериментальных, сугубо статистических методов анализа связи между переменными. В частности, речь идет о случаях ложной корреляции между переменными, а также о том, что в неэкспериментальных исследованиях часто невозможно однозначно упорядочить изучаемые переменные во времени и, следовательно, задать направление причинной связи2. Основанная на эксперименте модель статистического вывода в значительной степени лишена этих недостатков, хотя ее использование в социальных науках во многих случаях также сталкивается с существенными техническими, этическими и прочими ограничениями.
ГЛАВА 5. МАССОВЫЕ ОПРОСЫ В СОЦИОЛОГИИ
Определение и истоки
Метод опроса—самый распространенный из социологических методов, определяющий «образ» социологии в глазах непосвященных и к тому же имеющий самую богатую и давнюю историю. Утверждение о том, что почти невозможно дать строгое и исчерпывающее определение того, что такое опрос, на первый взгляд кажется нелепостью. Однако в действительности представления о том, каким должен быть хороший социологический опрос, менялись так часто, что любая попытка свести определение опроса к конкретной технике сбора информации, плану исследования, типу анализа данных или характеру использования полученных сведений наверняка столкнется с трудностями. Трудности эти так существенны, что один известнейший специалист в этой области в монографии, посвященной анализу истории и перспектив опросного метода, предложил говорить о некотором «базовом типе» опроса, по отношению к которому можно было бы упорядочить все многообразие реальных опросных исследований1. Идеальной моделью он предложил считать «модель Гэллапа», т. е. тот тип опроса общественного мнения, который сложился в 1930—1940-х гг. в результате сотрудничества (и конкуренции) между основанным Дж. Гэллапом в 1935 году Американским институтом общественного мнения и другими исследовательскими фирмами. Для типичного «гэллаповского» опроса характерны следующие признаки:
1) общенациональный характер;
2) отбор из генеральной совокупности всех лиц, достигших избирательного возраста;
3) максимальная приближенность времени проведения опроса ко времени выборов или референдумов;
4) среднее число респондентов в выборке — 2000 человек;
5) случайный или квотный характер выборки;
6) использование стандартных вопросников и личное интервьюирование каждого респондента по месту жительства;
7) «закрытый» характер вопросов;
8) сбор индивидуальных, неагрегированных данных (каждое наблюдение может быть соотнесено с конкретным индивидуумом в выборке)2.
Широко распространенные отклонения от описанной «гэллаповской» нормы все же столь существенны, что нам следует рассмотреть и другие подходы к определению сути опросного метода. Во-первых, следует вспомнить о том, что
1 Miller W. L. The Survey Method in the Social and Political Science: Achievements, Failures, Prospects. L.: Frances Printer Publ., 1983. Part 1. 2 Ibid. P. 6—7.
для социологии как науки главной функцией опроса является все же не предсказание результатов завтрашних выборов, а проверка гипотез о характере связей между различными переменными. (Переменная-признак задается как one-рационализация неких содержательных представлений о существенном для социологической теории качестве, свойстве: «социально-экономическом статусе», «отчуждении», «расовой сегрегации» и т. п.) Во-вторых, использование выборочного обследования, как говорится в главах 7 и 8, как раз и имеет основной целью либо оценку значения определенного параметра в совокупности, либо—в большинстве случаев—проверку статистической гипотезы о связи между переменными. Эксперимент—это идеальная модель исследовательского плана для анализа причинных связей. Выборочное обследование (опрос) — хорошее приближение к идеальной модели. Для идеального эксперимента, напомним, характерны:
1) контроль условий, т. е. возможность варьирования независимых переменных и измерения зависимых;
2) использование экспериментальной и контрольной групп для проведения повторных сравнений;
3) рандомизация, т. е. случайный отбор испытуемых в контрольную и экспериментальную группы.
В выборочном исследовании, строго говоря, отсутствует возможность контроля, так как исследователь лишен возможности манипулировать независимыми переменными, произвольно задавать их значение. Однако с помощью количественных методов измерения и статистического анализа связи между переменными выборочный опрос может максимально приблизиться к той модели причинного вывода, которая лежит в основе экспериментального метода.
В целом анализ связи между переменными—и экспериментальный, и сугубо статистический, основанный на опросных данных,— подразумевает перекрестную группировку данных по двум переменным (независимой и зависимой), обнаружение связи между ними и введение третьей, контрольной переменной для оценки ее влияния на изучаемую связь. (Кстати, те возможности для контроля влияния «посторонних» факторов на исследуемую взаимосвязь, которые возникают при анализе связи в выборочных обследованиях, обычно даже превосходят возможности эксперимента.) В последнем случае набор контрольных переменных, «изолируемых» с помощью эксперимента, обычно ограничен. В выборочном обследовании список переменных чаще всего значительно обширнее и к тому же включает в себя такие переменные, которые в принципе не могут использоваться в эксперименте из практических или этических соображений:
нельзя, например, произвольно назначить испытуемому экспериментальное условие «родился чернокожим» или «часто подвергался жестокому обращению». Однако заметим сразу, что последнее обстоятельство все чаще используется не столько для восхваления, сколько для критики — во многих отношениях справедливой—применимости выборочных опросов для анализа причинных связей (о чем еще будет сказано ниже).
Случайный отбор, используемый на том или ином этапе как основа построения выборки для массового опроса, может рассматриваться как подобие рандомизации в эксперименте. В идеальном случае, почти не встречающемся на практике, любая единица генеральной совокупности имеет равные шансы попасть в выборку. Поэтому влияние внешних, «посторонних» факторов нейтрализуется,
и систематическое смещение отсутствует. В реальности, как показано в обсуждении выборочного метода, мы редко можем реализовать простую вероятностную выборку, довольствуясь каким-то приемлемым и экономичным компромиссом между случайным отбором, стратификацией и квотированием.
Контрольная и экспериментальная группы, используемые в экспериментальных планах для сравнения и выявления эффекта некоего причинного фактора, «отбираются» в выборочных обследованиях на стадии анализа, апостериорно. Фактически они «конструируются» исследователем ad hoc в ходе сравнения подвыборок, выделенных с помощью фиксации разных уровней одной (или нескольких) объяснительных переменных.
В целом опросные методы обладают рядом существенных достоинств:
1) позволяют достаточно быстро получить большой массив наблюдений, причем каждый индивидуальный «случай» (отдельное наблюдение) описывается с помощью целого набора теоретически релевантных перемен-ных-признаков;
2) стоимость выборочного опроса оказывается сравнительно небольшой, если принять во внимание объем получаемой информации;
3) использование стандартных опросных процедур и однородных количественных показателей при соблюдении определенных условий позволяет не только проверять гипотезы о причинных зависимостях, но и проводить вторичный и сравнительный анализ результатов.
Недостатки, также присущие этому методу, мы проанализируем в следующих разделах.
Выбор исследовательского плана
Даже в том случае, когда исследователь четко осознал, в чем заключаются содержательные вопросы, на которые он хочет получить ответ в ходе выборочного обследования, ему не стоит торопиться составлять анкету и нанимать интервьюеров. Прежде ему нужно поразмыслить над тем, какого рода логику анализа данных он собирается использовать, после того как эмпирические данные будут получены. Для того, чтобы сведения о людях, группах или сообществах (об их поведении, установках или других чертах) можно было рассматривать в качестве доказательства каких-то теоретических гипотез, следует сначала решить, что именно можно считать доказательством в данном случае, по каким правилам будут строиться логические сопоставления и статистические выводы, иными словами, необходимо выбрать принципиальный исследовательский план.
В главе 4 довольно подробно говорится о том, как различия в логике и целях анализа влияют на выбор плана эксперимента. В планировании выборочного опроса исследователи исходят приблизительно из тех же соображений: сравнение «случаев», подгрупп, сравнение типа «до—после». Здесь мы рассмотрим лишь самые общие типы исследовательских планов, используемых в выборочных опросах (другие проблемы планирования детально анализируются в главе 7, посвященной построению выборки).
Первый шаг в планировании опроса—это принятие решения о том, что считать единицей анализа. В простейшем случае мы стремимся приписать каждому индивиду (респонденту) определенное значение по каждой переменной. Предположим, наша цель заключается в том, чтобы на основании опроса 2000 респондентов узнать, как распределены в генеральной совокупности «партийная принадлежность», «судимость» и некоторые другие переменные, а кроме того, мы собираемся проанализировать связь этих переменных с полом, возрастом и семейным статусом. Некоторые из переменных будут строго количественными, другие будут описываться как качественные признаки. В любом случае нам нужно будет охарактеризовать каждого респондента по каждой переменной. В результате мы сможем построить структурированную матрицу данных, подобную той, что изображена в табл. 5.1. В столбцах этой матрицы содержится вся информация о респондентах, которые здесь и являются единицами анализа (или «случаями»). Именно их свойства нам предстоит оценивать, сравнивать в поисках взаимосвязей и т. п.
Таблица 5.1 Пример матрицы данных типа «респонденты х переменные» | ||||
«Случай» Переменная | 1-й респондент | 2-й респондент | 2000-й респондент | |
Пол | мужской | женский | мужской | |
Возраст | 38 лет | 23 года | 62 года | |
Семейный статус | разведен | замужем | вдовец | |
Судимость | отсутствует | отсутствует | 2 судимости | |
Партийная принадлежность | конституционный демократ | беспартийная | христианский социалист | |
Обычно единицами анализа, т. е. теми, кого исследуют, бывают именно люди. Однако единицами анализа могут быть и семьи, и организации, и регионы, и государства. Например, в матрице данных столбцы могли бы соответствовать городам, а строки—переменным типа «уровень преступности», «население», «число безработных» и т. п. Некоторые из переменных были бы получены путем агрегирования, «объединения», индивидуальных данных (например, о наличии дополнительных источников дохода), другие характеризовали бы город как целое (наличие аэропортов, доля прямых налоговых поступлений в бюджете). В любом случае исследователю нужно заранее представить себе, как будет выглядеть матрица данных и какие приемы анализа он собирается к ней применить.
Любое конкретное исследование может предполагать и использование различных единиц анализа, т. е. полученная в нем эмпирическая информация может характеризовать и отдельных индивидов, и семьи, и— в результате использования агрегированных показателей—регионы или государства. Важно лишь, чтобы все единицы анализа, которые вы намерены использовать, были определены заранее. В ином случае в матрице данных «единица анализах переменная» неизбежно возникнут пропуски или дублирование одной и той же информации. Так как количество матриц данных равно количеству предполагаемых единиц анализа
(хотя размерность их будет разной3), можно заранее создать соответствующее количество отдельных массивов данных (файлов), содержащих те данные, которые относятся к данной единице анализа. Скажем, сведения о возрасте попадут в массив «респонденты», а сведения о составе семьи—в массив «семьи» (даже если последние и были получены в результате беседы с одним из членов семьи).
Описанная выше двумерная матрица данных типична для одномоментного, «сре-зового» исследования, характеризующего ситуацию в момент опроса. Целью такого исследования может быть, во-первых, описание распределения каких-то переменных в совокупности. Например, мы можем узнать, сколько человек собирается проголосовать за демократов при условии, что выборы будут проведены тотчас же (типичный «гэллаповский» опрос). Во-вторых, мы можем попытаться использовать «срезовые» данные для характеристики отдельных подвы-борок—например, «работающих пенсионеров», «высококвалифицированных рабочих в возрасте от 30 до 45 лет» и т. п. Далее, применяя различные методы статистического анализа, можно проверить какие-то гипотезы о взаимосвязи переменных (в данный момент времени). В последнем случае исследование становится объяснительным. Однако даже в чисто описательном исследовании мы столкнемся с необходимостью каких-то сравнений, делающих полученные нами оценки осмысленными. Если, например, мы узнаем, что 15% подростков читают медицинские журналы не реже 1 раза в месяц, то для того, чтобы понять много это или мало, нам нужно будет с чем-то сопоставить этот показатель. Скажем, мы можем сравнить подростков 1994 года с подростками 1954 года. (Конечно, нам предварительно придется найти данные соответствующего опроса 40-летней давности.)
Изменениям во времени подвержены не только отдельные показатели, но и взаимоотношения между переменными. Так, глобальные социально-экономические изменения—экономический кризис, сдвиг в социально-классовой структуре—могут привести к тому, что высокая зависимость дохода от продолжительности образования станет незначимой. Следовательно, изучение сложного причинного механизма воздействия образовательного уровня на доходы требует какой-то серии разделенных во времени обследований, позволяющих проследить динамику интересующего нас отношения под влиянием существенных внешних переменных.
Исследовательские планы, позволяющие анализировать данные во временной перспективе, называют лонгитюдными. Данные получают многократно, в разные моменты времени, причем цели исследования могут быть сугубо дескриптивными (доля голосующих за коммунистов, распределение положительных и отрицательных установок по отношению к «мыльным операм») и объяснительными.
Принято выделять основные виды лонгитюдных планов, каждый из которых имеет множество модификаций и «переходных» форм. Это трендовые, когорт-ные и панельные исследования.
Трендовые обследования ближе всего к уже описанным однократным, «срезо-вым», опросам. Некоторое авторы даже предлагают обозначать их просто как
3 Например, размерность матрицы «респонденты х переменные» может быть 2000 (респондентов х 32 (переменных), а размерность матрицы «городах переменные»—6 (городов) х 4 (агрегированных показателей).
регулярные опросы, т. е. опросы, проводимые через более или менее равные промежутки времени4. В трендовом опросе одна и та же генеральная совокупность изучается в разные моменты времени, причем каждый раз выборка строится заново. Иными словами, анализируются последовательные выборки из одной и той же совокупности. Например, опрос Института Гэллапа, проводимый ежемесячно в ходе избирательной компании, является трендовым обследованием, показывающим динамику установок населения по отношению к кандидатам или партиям. Строго говоря, если количество тех, кто собирается голосовать за кандидата X, за месяц увеличилось на 16%, мы можем лишь зафиксировать изменение картины предпочтений избирателей, но не можем наверняка утверждать, что определенная группа избирателей изменила свои предпочтения, так как в двух последовательных опросах мы имеем дело с разными респондентами. Преимуществом оперативных трендовых исследований является возможность «привязки» наблюдаемых изменений к текущим событиям—политическим скандалам, решениям правительственных органов, изменениям в финансово-экономической ситуации,— что облегчает их интерпретацию.
Однако, например, ежегодные исследования занятости и безработицы, проводимые по этому плану, могут привести к трудноинтерпретируемым результатам. Если в результате двух таких исследований окажется, что социально-демографические характеристики людей, получающих пособие, почти не изменились, будет большой неосторожностью утверждать, что существует какая-то «типичная» группа людей, постоянно живущая на средства налогоплательщиков. Вполне вероятно, что большинство респондентов, охваченных первым опросом, уже нашли работу.
В качестве особого исследовательского плана иногда рассматривают когорт-ные обследования. Основания для выделения этого плана несколько условны и связаны скорее с теоретической логикой интерпретации (а не сбора) данных. Если в трендовых исследованиях отбор каждый раз производится из общей совокупности—всех избирателей, всех семей и т. п.,—то, исследуя «когорты» (от лат. cohors (cohortis)—подразделение, видовая группа), мы каждый раз производим отбор из одной специфической совокупности, стремясь проследить перемены в ее поведении, установках и т. п. Пусть, например, мы изучали ценностные ориентации десятиклассников в 1985 году, а в 1995 году нам захотелось снова опросить бывших десятиклассников, так как мы предполагаем, что их ценностные ориентации изменились с переходом в иную стадию жизненного цикла (создание собственной семьи, формирование профессиональной идентичности и т. п.). В этом случае мы будем работать с новой выборкой из прежней специфической совокупности, сравнивая представителей одной и той же «когорты» с десятилетним интервалом, а не десятиклассников 1985 года с десятиклассниками 1995 года (в последнем случае можно было бы говорить о трендовом исследовании десятиклассников).
Самым совершенным воплощением идеи введения временной перспективы в исследовательский план является панельное обследование. Если вернуться к нашей структурированной матрице данных (см. табл. 5.1), то можно сказать, что панель — это прибавление к двумерной матрице еще одного измерения, пре-
4 См.: Hakim С. Research Design: Strategies and Choices in the Design of Social Research. L.: Alien & Unwin, 1987. P. 76—77.
вращающего ее в пределе в некий «параллелепипед» данных. Панельные исследования позволяют не только зафиксировать какие-то социальные изменения в установках, поведении и т. п., но и выявить причины и последствия этих изменений на микроуровне, т. е. на уровне отдельных индивидов. Если трендо-вое исследование показывает, что десятая часть потребителей, предпочитавших отечественные макароны, «переметнулась» к поклонникам спагетти, мы не можем точно определить, кто из респондентов изменил свои предпочтения и, следовательно, каковы общие характеристики «перебежчиков». Таким образом, мы лишены возможности проверить, какие объяснительные переменные позволяют предсказывать динамику предпочтений на микроуровне.
Панельное исследование—это многократное обследование одной и той же выборки из генеральной совокупности в разные моменты времени. Эту многократно используемую выборку и называют панелью. Исследовательский план, использующий панель респондентов,—весьма дорогостоящее предприятие, требующее к тому же очень тщательной проработки всех деталей до начала опроса. В трендовом и когортном исследовании данные нередко сравниваются с данными других опросов, проводившихся ранее иными исследовательскими группами. Этот путь проще и дешевле, однако сравнимость результатов обследований, планировавшихся разными исследовательскими командами и — чаще всего—для разных целей, всегда проблематична. Возможность оценки «чистого эффекта» и величины наблюдаемых изменений—большое преимущество панельного плана. Однако эта возможность прямо зависит от величины усилий, предпринятых социологами для сохранения неизменности самой панели и инструментов сбора данных. Если, например, в первой волне панели (волной обычно называют один полный цикл опроса панели, один «замер») социолог позабыл включить в список для ранжирования тяжести преступлений квартирные кражи, то использование дополненного списка во второй и третьей волнах не поправит дела: сопоставимость полученных в панели ранжировок будет ничуть не выше, чем в случае обычных «срезовых» обследований, при более высоких затратах. Поэтому панельные исследования чаще всего используют как очень точное средство проверки конкретных гипотез в отчетливо очерченной предметной области. Выбор панельного плана в случае пилотажных или поисковых исследований совершенно неоправдан.
Панельные исследования незаменимы в проверке причинных гипотез, особенно в тех случаях, когда отсутствует «естественный» критерий для разделения независимой и зависимой переменных во времени. Например, множество «сре-зовых» исследований может демонстрировать устойчивую высокую корреляцию между систематическим потреблением алкоголя и проявлениями социальной дезадаптации (развод, потеря статуса и т. п.), однако лишь длительное панельное исследование может дать необходимый материал для того, чтобы решить, ведет ли алкоголизм к дезадаптации либо, наоборот, является ее следствием. Панельные исследования незаменимы и для анализа более сложных причинных моделей с отсроченными эффектами (лагами), петлями «обратной связи» и т. п.
Основным преимуществом панельного плана с сугубо статистической точки зрения является возможность отделить реальные изменения показателей от разброса, связанного с ошибкой выборки.
В случае «непанельного» опроса (трендовый опрос, сравнение данных двух независимо проведенных «срезовых» опросов) какое-то различие между двумя последовательно опрошенными выборками, значимое на 5%-м уровне, скажем, различие между 49 и соответственно 54% предпочитающих «сильную руку» институтам представительной демократии с вероятностью, превосходящей 1:20, будет связано с выборочной ошибкой, а не с радикальными переменами в политической атмосфере. Аналогичные данные панельного исследования позволяют говорить о наличии реальных изменений.
Однако не следует считать, что любое реальное изменение, фиксируемое в панельном опросе, также подлежит содержательной интерпретации с использованием теоретически «привлекательных» переменных. Во-первых, наша панель —это всего лишь выборка среди других возможных выборок (других возможных панелей). Используя панельный план, мы уменьшаем влияние ошибки выборки на значимость различий между двумя волнами, но не исключаем ошибку выборки полностью: результаты сравнений для второй (девятнадцатой, двадцатой...) панели могли оказаться иными. Далее, фиксируемые изменения могут быть связаны с низкой надежностью нашего измерительного инструмента, о чем мы еще будем говорить при обсуждении проблем измерения. Наконец, наша интерпретация результатов может оказаться необоснованной из-за изменений в самой панели. Полезно помнить, что панельное исследование по логике анализа результатов ближе всего стоит к простейшему экспериментальному плану типа «до—после». Малоприятным продолжением этого достоинства является подверженность панельного плана тем же угрозам систематического смещения (см. гл. 4). В частности, эффекты «созревания» участников панельного опроса были неоднократно продемонстрированы даже в таких нейтральных сферах, как изучение семейного бюджета или чтение газет и журналов. После двух-трех волн члены панели достоверно чаще фиксируют свои ежедневные расходы и начинают тратить на чтение газет на 10—15% больше времени. Перемены в политических установках и поведении обычно носят еще более драматический характер: политические симпатии смещаются к крайним полюсам, доля активно участвующих в выборах возрастает. Основным механизмом, отвечающим за этот эффект, является стремление индивидуума к когнитивному балансу, к поддержанию высокой степени согласованности между собственными высказываниями и действиями. Соответственно описываемый тип смещения резче выражен в панелях с маленькими интервалами между волнами. По
мере увеличения промежутков между последовательными опросами — по крайней мере, до 1—2 лет—эффект «созревания» уменьшается, так как все сильнее становится влияние направленных в противоположную сторону эффектов «памяти» (вернее сказать, «забывания»): респонденты просто плохо помнят, что они говорили год или десять лет тому назад.
К сожалению, именно в тех случаях, когда панельный план социологического исследования более всего осуществим и его применение возможно и обоснованно—и с точки зрения логики анализа, и по реальным возможностям вне-академического финансирования,—тактика увеличения интервалов между циклами панели может оказаться неосуществимой. Пример тому—предвыборные опросы, где интервалы бывают равны 1—2 неделям и редко превышают 1—1,5 месяца.
Так, интерпретация классического «Народного выбора», проведенного П. Лазарсфельдом и его соавторами исследования президентских выборов в США в 1940 году5, остается неоднозначной, хотя его основные результаты были много раз воспроизведены другими исследователями. Панель Лазарсфельда состояла из семи волн, разделенных месячным интервалом. Столь сложный план требовался для того, чтобы проследить, как меняются предпочтения американского электората в ходе выборной кампании, и какие факторы влияют на изменение решений отдельных избирателей. Самым поразительным результатом исследования оказалось то, что почти половина опрошенных ни разу не меняла свои политические предпочтения на протяжении полугода. Вероятно, немалую роль в формировании столь обширной группы «непоколебимых» сыграли описанные эффекты «созревания» в результате участия в панели.
Самый серьезный и распространенный тип смещения связан, однако, с другой постоянной проблемой всех панельных планов — проблемой «выбывания» из панели (или, что звучит несколько мрачно, со «смертностью», или «истощением», панели). Истощение панели проявляется в увеличении неучастия и «неответов» респондентов от первой волны к последующим. Некоторые респонденты оказываются недоступными для контактов: они меняют место жительства, болеют, умирают. Другие участники панели просто отказываются от следующего интервью. В результате и репрезентативность панели, и эффективный объем параллелепипеда данных, т. е. реальная возможность сравнивать ответы одного респондента в разные моменты времени, резко снижаются от волны к волне (хотя расходы на поддержание панели продолжают расти). Особенно неприятна ситуация, когда «вымирают» определенные социально-демографические группы респондентов, что приводит к непоправимым систематическим смещениям. Эта ситуация возникает не так уж редко. Исследователи, работающие в коммерческих опросных фирмах, неоднократно замечали, что в рыночных исследованиях и исследованиях аудитории газет и журналов самой высокой «смертностью» отличаются молодые участники панели, особенно учащиеся-юноши в возрасте 18—25 лет. Иногда даже увеличение платы за участие в панельном опросе с каждой последующей волной не влияет на выбывание (это должно служить слабым утешением академическим исследователям, лишенным возможности платить респондентам).
5 См.: Lazersfeld P. F., Berelson В., Gaudet H. The People's Choice: How the Voter Makes Up His Mind in a Presidential Campaign. N. Y.: Columbia University Press, 1944.
В больших общенациональных панелях, приближающихся к «микро-переписям», для борьбы с выбыванием иногда используют метод самовосстановления, особенно в случаях, когда выборочной единицей является семья, домовладение, организация и т. п. Например, в проводимом с середины 1960-х гг. Мичиганским университетом исследовании бюджета американских семей (PSID) ежегодно опрашивается более 5000 семей. Каждый отделившийся член семьи (например, взрослый сын, решивший жить отдельно от родителей) остается в выборке в качестве новой единицы наблюдения, так что выборка остается репрезентативной по типам семей, возрасту их членов и т. п. Выбывание из этой панели за первые десять лет составило 28% исходной выборки (кстати, это совсем немного для панельного опроса), однако за счет самовозобновления, т. е. включения в выборку «отселившихся» членов семей, абсолютный размер панели за это же время даже вырос с 5000 до 5860 семей6.
Очевидно, что панельные исследования—очень сложное, хотя и эффективное, средство проверки социологических гипотез. Вышеприведенные соображения вполне объясняют, почему панельный план используется реже других типов исследовательского плана. Панельный план практически доступен лишь для достаточно крупных исследовательских организаций и требует привлечения значительных материальных и финансовых ресурсов7, однако он абсолютно незаменим при исследовании социальных эффектов исторических изменений, сложных причинных моделей индивидуального выбора, процессов социализации и т. п. Многие социологи полагают, что оптимальным решением является использование комбинированных исследовательских планов, сочетающих в себе некоторые черты «срезовых», трендовых и панельных опросов. Самый простой из таких планов—это ретроспективное панельное исследование, когда опрос проводится однократно, однако включает большое количество вопросов о прошлом респондента. Например, в исследованиях профессиональной мобильности респондентов спрашивают о деталях их карьеры, периодах безработицы, причинах изменения места работы и т. п. Реконструированные таким образом «профессиональные биографии» анализируют так, как если бы они были получены в лонгитюдном обследовании. Возникающие здесь проблемы связаны, в первую очередь, с субъективными погрешностями припоминания, с изменением точки зрения на события прошлого, иногда—с намеренным искажением информации. Так, использование ретроспективного плана в изучении зависимости социально-экономического статуса от образования может вести к неверным выводам: доказано, что большинство людей имеет склонность задним числом «завышать» свои успехи в обучении. Однако этот тип плана может оказаться достаточно эффективным, например при сравнительном изучении динамики занятости замужних и незамужних женщин. Основное достоинство ретроспективного плана—радикальное решение проблемы выбывания.
Более сложные типы комбинированных планов используют в микро-переписях, общенациональных обследованиях занятости и безработицы, преступности и т. п. Очень эффективны циклические планы с замещением, где в каждой последующей волне какая-то доля исходной выборки «отдыхает», будучи заме-
6 Hakim С. Ор. cit. P. 91—92.
7 Достаточно сказать, что проведение панели требует постоянного отслеживания адресов участников, поддержания контактов с ними. С этой целью используют и поздравительные открытки, и рассылку отчетов, и даже местные собрания респондентов.
щенной новой эквивалентной подвыборкой. Скажем, если в ежегодном опросе треть панели каждый раз замещается, то каждая из исходных «третей» будет опрошена от одного до трех раз, прежде чем состав участников полностью обновится. «Поперечный» и «продольный» анализ позволит и учесть эффекты участия (при сравнении результатов «кратковременных» и «длительных» респондентов), и дать текущую картину распределения переменных по социальным группам, и зафиксировать резкие изменения. Иногда часть вопросов предъявляется лишь сравнительно небольшой подвыборке, имеющей характеристики «фокусной» группы (например, только матерям-одиночкам, получающим социальные пособия), что позволяет проанализировать динамику поведения и мнений «труднодоступных» популяций. Нередко общую базу данных поддерживает и анализирует одна исследовательская группа, а для анализа «периферийных» тем и специфических подвыборок привлекаются эксперты из других институций. Объективная логика развития регулярных опросов, основанных на комбинированных исследовательских планах, явно ведет к созданию междисциплинарных, многоцелевых проектов и баз данных, имеющих множество источников финансирования (таковы, например, некоторые общенациональные лонгитюдные исследования преступности, здоровья населения). Соответственно все выше ценятся услуги методологов, специализирующихся в планировании исследований, стандартизации показателей, социологическом измерении.
Уровни измерения
Существует несколько концепций измерения, по-разному определяющих, что может быть названо операцией измерения. В гуманитарных науках — и социология не является исключением—наибольшее влияние имеет репрезентаци-онная концепция измерения, впервые детально обоснованная психофизиком С. С. Стивенсом. В этой концепции всякая операция измерения в конечном счете определяется как приписывание чисел вещам (свойствам, событиям) в соответствии с определенными правилами, так что отношения между числами отражают (или представляют, репрезентируют) отношения между вещами. Таким образом, измерение представляет определенные свойства в виде чисел, поддающихся суммированию, сравнению и т. п. Однако наша возможность измерить какие-то эмпирически наблюдаемые свойства, представить отношения между вещами в виде чисел редко носит абсолютный характер. О некоторых эмпирических свойствах мы можем сказать, что они выражены «больше» или «меньше» для каждого конкретного наблюдения, но не можем указать случаи, когда это свойство абсолютно отсутствует: так, даже если испытуемый не решил ни одной задачи, мы едва ли осмелимся утверждать, что он полностью лишен «интеллекта». Иногда наша способность измерять ограничена лишь возможностью отн