Поправки на одежду и обувь для некоторых размеров тела
Влияние маскирующих антропометрических факторов учитывается путем соответствующего увеличения (уменьшения) той или иной антропометрической характеристики.
Порядок использования на практике рассмотренных антропометрических характеристик заключается в следующем:
• определить контингент людей, для которых предназначено данное оборудование;
• выбрать антропометрические характеристики, которые являются основными для определения размеров оборудования и необходимого рабочего пространства;
• установить, какому проценту работающих должно удовлетворять данное оборудование, и найти соответствующие ему значения антропометрических характеристик;
• учесть соответствующиепоправки на одежду и обувь.
Подробные рекомендации по выполнению рассмотренных правил можно найти в специальной литературе [215].
14.4. Физические качества, энергозатраты и тяжесть труда оператора
На результаты выполнения управляющих действий оператора большое влияние оказывают его физические качества. Под ними понимаются такие качества человека, которые обусловливают возможность выполнения им физической (мускульной) работы. К основным физическим качествам оператора относятся сила, быстрота, выносливость, координация и точность движений, ловкость и гибкость [104].
Сила человека определяется его способностью преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилий. Различают следующие разновидности силы: статическая, проявляющаяся при напряжении неподвижных мышц; динамическая, проявляющаяся при движениях; амортизационная, проявляющаяся при уступающих воздействию движениях; взрывная, характеризующая способность проявить силу большой величины за короткий промежуток времени.
Выносливость характеризует способность к длительному выполнению какой-либо деятельности без заметного снижения ее эффективности. Различают динамическую и статическую выносливость (см. главу X), а также общую и специальную выносливость. Общая выносливость определяется по отношению к продолжительной работе умеренной тяжести, включающей функционирование большей части мышечного аппарата. Специальная выносливость представляет выносливость по отношению к определенной деятельности.
Координация движений есть согласованность одновременно или последовательно выполняемых движений. Точность движений определяется степенью соответствия движений двигательной задаче. Различают три вида точности: по силе, пространственную и временную. Под гибкостью понимается способность выполнять движения с большой амплитудой.
Комплексным качеством двигательных способностей человека является ловкость. Она измеряется следующими показателями: координационной сложностью задания, точностью и временем ее выполнения, количеством функциональных двигательных единиц, вовлеченных в движение. Значение ловкости особенно велико при выполнении сложных непрерывных движений, оно существенно меньше при выполнении дискретных действий.
Управляющие действия определяют физический компонент деятельности оператора. В соответствии с основными положениями физиологии труда физическую работу можно разделить на два вида [44, 75]:
• динамическую мышечную работу, при которой мышцы различных групп попеременно растягиваются и сокращаются, т. е. ритмично напрягаются и расслабляются;
• статическую мышечную работу, при которой мышцы не движутся (например, когда человек держит груз на вытянутой руке или работает согнувшись, на корточках).
При статической работе напряжение в среднем в 5 раз превышает напряжение, вызываемое динамической работой. При статической работе требуется в 3 — 4 раза больше времени на восстановление затраченной энергии, чем при динамической работе. Статическая нагрузка, возникающая при манипулировании органами управления, не должна превышать 15% максимального усилия соответствующей конечности (руки или ноги) при данной рабочей позе оператора.
Физическая нагрузка во многом определяет энерготраты оператора (хотя следует сразу оговориться, что только ею не ограничиваются энергетические затраты организма). Поэтому в целом ряде случаев энергетический подход нередко используют для измерения тяжести работы. При этом тяжесть работы оценивают или по величине грузопереработки или по количеству расходуемой человеком энергии (калориметрический метод).
Первый способ основан на предположении, что между величиной мышечных усилий, требующих определенного количества энергии, и степенью утомления работающего существует пропорциональная зависимость. Поэтому в ряде случаев для классификации работ по тяжести пытаются использовать законы механики. За меру тяжести при этом принимается работа, совершаемая по перемещению груза на определенное расстояние, выраженная в килограммометрах или килоджоулях. Такой подсчет выполняемой человеком внешней механической работы не всегда дает точные результаты, поскольку процессы, протекающие в организме, очень сложны, и работа человека не может быть приравнена к работе механического устройства. Попытки учесть некоторые психофизиологические особенности человека (вес его тела, подъем и спуск с грузом или без него, повороты и наклоны корпуса тела, тягу, толкание груза и т. д.) принципиально положение дел не меняют, поскольку общий подход к определению энерготрат по прежнему остается чисто механистическим.
Другой способ (калориметрический) основан на том, что выполняемая человеком механическая работа сопровождается расходованием тепловой энергии, источником которой является потребляемая пища. Такой подход вытекает на основании рассмотрения условной модели энергетики организма. [3].
Энергетику организма условно можно представить в виде системы биохимических аккумуляторов энергии, получающих ее из общего энергетического резерва организма и питающих органы — потребители (рис. 14.7). Каждый аккумулятор обладает определенной энергоемкостью, поэтому утомление любого органа (мускулатуры руки или всего тела, органов чувств, мозга и центральной нервной системы и т. д.) можно представить как израсходование энергии в аккумуляторе, питающем этот орган. Время же отдыха можно представить как время зарядки аккумулятора.
Рис. 14.7. Условная модель энергетики организма.
С учетом сказанного, как следует из рис. 14.7, общие энерготраты организма можно представить как сумму двух составляющих
где Аакт — энерготраты на активную деятельность (нервно-мозговую и физическую), Асо — энерготраты на самообслуживание организма.
Из сказанного видно, что энерготраты на выполнение мышечной работы составляют лишь часть общих энерготрат. Поэтому оценка тяжести труда лишь путем оценки величины внешней механической работы, выполняемой человеком, является очень упрощенной и неточной. Такая оценка нужна лишь для установления нижней и верхней границ физической нагрузки человека: известно, что как чрезмерно низкая физическая нагрузка (гиподинамия), так и чрезмерно высокая отрицательно сказываются на физическом состоянии и работоспособности человека.
Более точную оценку энерготрат организма дает применение калориметрического метода. Различают методы прямой и непрямой калориметрии. В первом случае оценка ведется по количеству выделенного человеком тепла, которое можно измерить с помощью специальных калориметров, представляющих собой теплоизолированные помещения (калориметрические камеры), улавливающие отдаваемое организмом тепло. Точность такого метода весьма высока, однако его применение возможно только в лабораторных условиях.
Поэтому на практике используют методы непрямой калориметрии. Они основаны на анализе выдыхаемого воздуха с последующим расчетом дыхательного коэффициента (отношение объема выделившегося углекислого газа к объему поглощенного кислорода). Для сбора выдыхаемого воздуха используется мешок Дугласа, а для определения энерготрат — газовый счетчик и газоанализатор выдыхаемого воздуха. Анализ проводится с учетом температуры воздуха и барометрического давления.
Энергетический расход для мужчин при условии, что в работе участвуют большая часть мышц приведен в табл. 14.10 [207]. Для женщин эти величины следует брать примерно на 20% ниже. Как следует из табл. 14.10 верхняя граница физической мощности составляет 8300 кДж израсходованной рабочей энергии за смену. Средний энергетический расход за смену у мужчин при шестидневной рабочей неделе не должен превышать 6650 кДж (у женщин — 4150 кДж). Чистый энергетический расход за неделю у мужчин не должен превышать 33000 кДж в оптимальных микроклиматических условиях. Максимальный энергетический расход за сутки, включая основной обмен и расход энергии в нерабочее время, не должен превышать 20000 кДж.
В зависимости от величины энергетического расхода различают несколько категорий тяжести работ (табл. 14.10). Среднетяжелую работу, когда энергетический расход за смену составляет 6250 кДж (или 33 кДж в минуту), здоровый человек может выполнять в течение долгого времени. Очень тяжелую работу, когда энергетический расход за смену составляет 10500 кДж (или 46 кДж в минуту), может выполнять лишь здоровый человек в возрасте от 20 до 30 лет в течение короткого времени.
Таблица 14.10