Логические категории и отношения между понятиями

Категории. Ни один предмет не представляет собой чего-либо совершенно отличного от всех других предметов; Он похож на них в каком-либо отношении: его всегда можно отнести в какой-либо общий класс с другими предметами; все вообще предметы могут быть относимы в общие с другими предметами классы. Есть классы, которые обнимают небольшое количество предме­тов, но есть классы, которые обнимают большое количество пред­метов, и именно потому, что это суть предметы с самыми общими сходствами. Эти классы вещей в нашем мышлении получают выражение в виде известных понятий. Такие понятия, которые служат для обозначения самых общих сходств между предметам и Аристотель назвал категориями. Слово «категория» происходит от греческого слова xatnyopew что значит высказывать, быть сказуемым. Категории для Аристотеля суть возможные предикаты какого-либо единичного предмета, т. е. такие понятия, которые можно высказать относительно того или иного единичного предмета или класса предметов.

Вот эти категории:

1. Субстанция (substantia).

2. Количество .(quantitas),

3. Качество (qualitas).,

4. Отношение (relatio).

5. Место (ubi).

6. Время (quando).

7. Положение (situs);

8. Обладание (habitus);

9. Действие (actio).

10. Страдание (passio).

Под эти десять категорий, по мнению Аристотеля, подходит всё то, что можно мыслить. Если мы желаем высказать о тех или других вещах что-либо самое общее, то мы не можем о них высказать ничего другого? кроме того, что они суть или субстанции, или что они обозначают качество, отношение, место и т. п. Других точек зрения, кроме тех, которые содержатся в категориях, не существует. Таким обра­зом, можно сказать, что категории представляют собой наиболее общие классы всего мыслимого.

В новейшей философии в качестве наиболее общих классов мыслимого философы различаютвещь, свойство, отношение. Всё, о чём мы можем мыслить, есть или вещь (субстанция), или это есть свойство (атрибут), или, наконец, это есть отношение.

Под вещами мы понимаем то, что обладает большим или меньшим постоянством формы. Например, таким постоянством обладают камень, дерево, жидкость в сосуде и т. п. Кусок камня сегодня обладает той же формой, какой он обладал вчера: нам представляется, что такое постоянство будет ему присуще и впо­следствии.

Вещи мы представляем или имеющими известные свойства или качества, или совершающими известные действия, или находящимися в известном состоянии. Например, то, что ку­сок железа имеет известную тяжесть, есть его свойство, или ка­чество. Если кусок железа накалён, то это есть его состояние: если кусок железа плавится или движется, то это есть известный процесс, состояние. Свойства, действия, состояния мы представ­ляем принадлежащими известной вещи как известной носитель­нице их. Но в то же время мы их мыслим как элементы, из кото­рых состоит вещь: мы мыслим железо как нечто, имеющее изве­стную тяжесть, твёрдость, способность накаляться, приходить в движение и т. п. Качество, действие, состояние мы будем назы­вать одним общим именем — свойства вещи.

Одна вещь может мыслиться нами находящейся в различных отношениях к другой вещи. Одна вещь может быть больше, , чем другая (пространственное отношение); одна вещь может быть причиной другой вещи (причинное отношение); одна вещь может возникнуть раньше, чем другая (временное отношение), и т. п.

Всё, что мы можем мыслить, мы должны мыслить под одной из этих категорий, т. е. всё, что мы мыслим, мы должны мыслить или как вещь, или как свойство вещи, или как отноше­ние. Эти три наиболее общих понятия мы и считаем категориями.

Рис. 4. логические категории и отношения между понятиями - student2.ru

 

Этим исчерпывается вопрос о категориях.

Отношения между понятиями.Рассмотрим логические отношения, существующие между понятиями.

1. Подчинение понятий (subordinatio notionurn) мы имеем в том случае, когда одно понятие относится к другому, как вид к своему роду, когда одно понятие входит в объём другого как часть его объема. Для примера возьмём понятие «дерево» А и понятие «берёза» В. Последнее понятие входит в объём первого. (Символ подчинения понятий см. на рис. 4.) Другие примеры: «духовная деятельность», «ощу­щение вкуса», «человек», «математик».

2. Соподчинение понятий (coordinatio notionum) мы имеем в том случае, если а объём одного и того же более широкого понятия входят два иди несколько одинаково подчинённых ему низших понятий. Эти низшие понятия называются соподчи­нёнными (координированными). Напри­мер, «мужество» В, «умеренность» С, «добродетель» А. Оба первых понятия входят в объём последнего (рис. 5).

логические категории и отношения между понятиями - student2.ru
Рис. 5.  

3. Понятия равнозначащие (notiones aequipollentes). Для разъяснения этого отношения возьмём два понятия: «английский народ» и «первые мореплаватели в мире». Когда мы произносим слова «английский народ» и при этом имеем в уме понятие «английский народ», мы думаем об англичанах. Когда мы произносим слова «первые мореплаватели», мы также думаем об англичанах; следовательно, объём этих двух понятий один и тот же. Раскроем теперь содержание этих понятий. В понятии «английский народ» мы мыслим извест­ное политическое устройство, известную территорию, известную культуру и т. д., в понятии же «первые мореплаватели» — известное искусство в постройке кораблей и управлении ими, из­вестное развитие морской торговли, многочисленность флота и т. д.; следовательно, содержание этих по­нятий различно. Если у нас есть два поня­тия с различным содержанием, но одинаковым объёмом, то такие поня­тия называются равнозначащими. Другие примеры: «христианин — крещёный», «ор­ганический — смертный», «величайший пи­сатель—автор «Войны и мира». Равнозна­чащие понятия можно символизировать при помощи двух кругов, сливающихся в один, подобно тому как сливаются объ­ёмы указанных понятий; различие же содержания символизи­руется двумя различными буквами, стоящими в этом круге (рис. 6).

логические категории и отношения между понятиями - student2.ru

 

4. Противные и противоречащие понятия. На эти два различных класса понятий, очень сходных по своим внешним свойствам, но в то же время совершенно различных по существу, следует обратить особенное внимание и хорошенько продумать их различие, .так как при оперировании с ними легко впасть в ошибку.

Если мы возьмём объём какого-нибудь понятия и будем рас­пределять по степени сходства виды, входящие в него, таким образом, что после каждого вида мы будем брать следующий, наименее от него отличный, то в конце концов из этих понятий-видов получится ряд, в котором первый и последний члены очень сильно отличаются друг от друга. Эти-то два понятия, пер­вое и последнее, во взятом нами ряде видов находятся в отноше­нии противности или противоположности. Будем, например, указанным способом распределять виды понятия «цвет». В его объём входят различные оттенки всевозможных цветов: красного, зелёного, чёрного, белого, серого и т. п. Если мы указанным выше способом будем размещать виды в ряд по мере сходства их, то можем получить приблизительно следующий ряд: белый, беловатый, светло-серый, серый, темно-серый, черноватый, чёрный.

Рис. 7.

логические категории и отношения между понятиями - student2.ru

логические категории и отношения между понятиями - student2.ru

Рис. 8.

Как видно из этого, наибольшее различие здесь между понятиями «белый» и «чёрный»; они-то и суть противопо­ложные или противные понятия. Итак, понятия, входящие в один и тот же объём, но очень отличающиеся друг от Друга, назы­ваютсяпротивными (contrariae). Схема: в круге, символизирую­щем объём какого-нибудь понятия, двумя линиями отделены два крайних отрезка, один против другого (рис. 7). Другие примеры: «добрый», «злой»; «высокий», «низкий»; «красивый», «уродли­вый»; «громкий», «тихий»; «глубокий», «мелкий». Надо заме­тить, что не все понятия имеют противные им понятия. Напри­мер, понятие «голубой» не имеет противного ему понятия.

Если мы имеем какое-нибудь понятие А и другое понятие В, относительно которого известно только то, что оно не есть А, то такие понятия называютсяпротиворечащими (contradictoriae). Например, понятия «белый» и «небелый» суть понятия противо­речащие. Итак, два термина, из которых один получен путём прибавления отрицательной частицы «не» к другому, относятся между собой, как противореча­щие. Символически отношение между противоречащими поня­тиями выражается следующим образом (рис. 8). Кругом сим­волизируется какое-нибудь одно понятие А, и вне его ставится другое понятие В, которое есть не-А, причём это понятие В может быть поставлено где угодно, лишь бы не внутри круга, не в его объёме; это второе понятие по своим свойствам называется понятием отрицательным или нёопредёленным (notio negativa seu indefinita).

Если мы возьмём для сравнения два понятия противополож­ные и два противоречащие:

«белый» — «чёрный» (противоположные), «белый» - «небелый» (противоречащие),

то мы можем наглядно убедиться, что разница между этими двумя логическими отношениями огромная: тогда как второй член первой пары (чёрный) имеет вполне определённое содержание, которое можно представить, второй член второй пары (небелый) такого определённого содержания не имеет. Его содержание отличается неопределённостью, т. е., употребляя слово «небелый», мы можем под ним понимать и красный, и зе­лёный, и синий, и даже большой, красивый, добрый и т. п.

5. Скрещивающиеся понятия (notiones inter se convenientes). Если мы имеем два понятия, содержание которых различно,нообъёмы некоторыми своими частями совпадают, то такие два понятия на­зываются скрещивающимися. Возьмём два понятия, например А — «писатели» и В — «учёные». В объёме понятия «писатели» заключается часть объёма понятия «учёные», ибо некоторые пи­сатели суть учёные, и, с другой сторо­ны, в объёме понятия «учёные» заключается некоторая часть объёма поня­тия «писатели», ибо некоторые из учёных суть писатели.Это мы могли бы изобразить при помощи схемы на рис. 9.

логические категории и отношения между понятиями - student2.ru

Так как та часть объёма понятия «писатели», которая состоит из учёных, и та часть объёма понятия «учёные», которая состоит из писателей, логически между собой равны, то символически их можно представить равными частями двух кругов, которые при наложении могли бы совпасть. Поэтому схемой скрещиваю­щихся понятий могут служить два скрещивающихся круга, причём круги символизируют объёмы данных понятий, а место их скрещивания — совпадающие, логически равные части этих объёмов. Другой пример — прямоугольные фигуры и параллелограммы, ибо некоторые прямоугольные фигуры суть параллелограммы и некоторые параллелограммы суть прямоугольные фи­гуры.

6. Понятия несравнимые (notiones disparatae). Возьмём два понятия: «душа» и «треугольник». Для этих двух понятий нет общего ближайшего родового понятия, в объём которого они могли бы оба войти как координированные. Между ними нет ничего такого общего, что могло бы для них явиться посредст­вующим, связывающим элементом, на основании которого их можно было бы сравнить. Такие два понятия находятся в логическом отношении несравнимости. Для того чтобы можно было сравнить два понятия, необходимо нечто третье, что объединяло бы эти понятия, — это именно ближайшее об­щее понятие, в объём которого они входили бы. Это третье по­нятие называется tertium comparationis.

Сюда же относятся понятия, которые вообще получены неотрицательным путём, например «бесконечный», «бесспорный» и т. п., если эти понятия могут быть символизированы только что указанным способом.

Следует заметить, что речь идёт об отсутствии ближай­шего родового понятия. Если мы возьмём, например, два таких понятия, как «корабль» и «чернильница», то при всём различии их они имеют нечто общее (и то и другое есть вещь), но нет бли­жайшего родового понятия, в объём которого они входили бы.

Вопросы для повторения

Что такое категория? Какие категории признавал Аристотель? Какие следует признавать категории? Что такое вещь, свойство, отношение? Что такое подчинение понятий? Приведите примеры. Что такое соподчинение понятий? Приведите примеры. Какие понятия называются равнозначащими? Приведите примеры. Какие понятия называются противными или противоположными? Приведите приме­ры. Какие понятия называются противоречащими? Приведите при­меры. Что такое скрещивающиеся понятия? Приведите примеры. Какие понятия несравнимые? Что необходимо для того, чтобы поня­тая можно было сравнивать?

Глава V

ОБ ОПРЕДЕЛЕНИИ

Цель определения. Когда мы произносим какое-либо слово, соответствующее известному понятию, и хотим сделать его по­нятным для всех, то мы должны раскрыть содержание поня­тия, соответствующего указанному слову, а так как содержа­нием понятия называется совокупность его признаков, то раскры­тие содержания понятия можно обозначить как перечисле­ние признаков, присущих данному понятию. Какое-либо понятие А содержит признаки а, Ь, с, d; если мы перечислим эти признаки, то тем самым точно обозначим, раскроем содержание понятия А; это значит, другими словами, что мы определим его.

Следует заметить, что не все понятия могут быть определены. Понятия по своему содержанию бывают весьма различны: содержание одних понятий больше, других —меньше. Такие по­нятия, которые имеют сложное содержание, т. е. такие, ко­торые имеют много признаков, могут быть определены. Но есть понятия, которые имеют настолько простое содержание, что не могут быть определены, потому что, как было сказано, для определения необходимо раскрытие содержания понятия; если же содержание понятия не может быть раскрыто, то оно не мо­жет быть и определено. Такие понятия называются простыми. Например, понятие «пунцовый цвет» не подлежит оп­ределению: цвет этот нужно видеть, чтобы знать, что он такое. Всё же определения, которые мы попытались бы дать в данном случае, были бы ложными в логическом отношении. Точно так же определять, что такое тон известной высоты, бесполезно; это усваивается, понимается непосредственным восприятием этого тона. Сюда же относятся такие понятия, как, например, понятия «равенство», «тождество», «тяжесть», «протяжение», «сознание» и т. п. Точно так же не могут быть определяемы индивидуальные понятия, потому что при определении их пришлось бы перечис­лить бесконечное множество признаков. Например: «этот бриллиант».

Итак, определить то или иное понятие значит перечислить его признаки. Но это представляется иногда задачей трудной, потому что количество признаков того или другого понятия может быть очень велико; поэтому перечислить даже большинство этих при­знаков не окажется возможным. Если бы, например, определяя понятие «прямоугольник», мы сказали, что прямоугольник есть геометрическая фигура, плоская, ограниченная прямыми ли­ниями, четырёхугольная, с прямыми углами и т. д., то это опре­деление было бы правильно, но практически оно неудобно, по­тому что перечисляется целый ряд признаков. Вследствие этого принят другой способ определения понятий, который имеет целью избежать полного перечисления признаков.Онзаключается в следующем.

Дадим определение прямоугольника. Для этой цели мы вос­пользуемся понятием «параллелограмм». Когда мы употребляем термин «параллелограмм», то под ним мы понимаем или прямо­угольник, или ромб, или квадрат. Зная это, мы не будем го­ворить «прямоугольник есть геометрическая фигура, плоская, ограниченная прямыми линиями, четырёхугольная» и т. д., а просто скажем, что это есть «параллелограм, в котором все углы прямые», ибо всякий под словом «параллелограм» разу­меет геометрическую фигуру, ограниченную четырьмя прямыми, попарно параллельными линиями; прибавляя, что все углы фи­гуры прямые, мы окончательно завершаем определение ее именно тем, что мы отличаем прямоугольник от ромба и от квадрата, которые тоже суть параллелограммы. Таким образом, определяя понятие «прямоугольник», мы указали род данного понятия (параллелограм) и присоединили к нему видовое различие его (четыре прямых угла), отличающее его от дру­гих видов, входящих в тот же род, т. е. от ромба и квадрата. Руководствуясь тем же правилом, мы скажем, что «ромб есть параллелограм, в котором все стороны равны», а «квадрат есть параллелограм, в котором стороны и углы равны».

Итак, определение заключается в указании рода данного понятия с присоединением видового различия его. Это в логике принято обозначать при помощи формулы: «Definitio fit per genus et differentiam specificam», т. е.определение совершается при помощи рода и видового различия.

Если нам нужно определить какое-либо понятие, то мы выра­жаем наше определение при помощи суждения, содержащего подлежащее и сказуемое. Подлежащее этого суждения называется определяемым (definiendum), сказуемое называется определяющим (definiens). Эти термины важны потому, что благодаря им мы можем указать те правила, при соблюдении ко­торых получается правильное определение. Таких правил четыре.»

Другие в этой формуле прибавляют к genus термин proximum: «definitro fit per genus proximum et differentiam speoificam» («определение совер­шается при помощи ближайшего рода и видового различия»), желая этим указать на то, что следует пользоваться ближайшим родовым понятием.

1. Определение должно быть соразмерным, т. е; таким, в ко­тором объёмы определяемого и определяющего тождественны, т. е. одинаково велики. Если правило это нарушено, то опреде­ление неадекватно, или несоразмерно. В таком случае оп­ределение делается или слишком широким или слишком узким, именно, если объём определяющего становится слишком широким или слишком узким в срав­нении с объёмом определяемого. Возьмём в пример определение лошади. Если сказать, что «лошадь есть домашнее животное», то это определение будет слишком широким; в нём объём определяющего будет более широким, чем объём определяемого понятия (в объём домашнего животного, кроме лошади, входят ещё коровы, собаки и т. п.). Относительно такого определения можно также сказать, что в него не входит ука­зание существенного признака данного понятия. Если в опре­делении опущены существенные признаки понятия, тогда оно окажется слишком широким, как в только что приведённом примере.

Возьмём определение, которое погрешает в противоположном направлении. Если бы мы сказали, что «треугольник есть плоская прямолинейная фигура, имеющая три равные стороны», то это определение было бы слишком узким. В нём объём определяю­щего понятия меньше объёма определяемого понятия. Именно: в объём определяющего понятия входят только равносторонние треугольники, а в объём определяемого понятия входят как рав­носторонние, так и неравносторонние треугольники.

2. Определение не должно делать круга. Это правило требует, чтобы определяемое понятие не определялось посредством понятия, которое само делается понятным только посредством определяемого. Возьмём, например, определение «вращение есть движение вокруг оси». Это определение понятия «вращение» посредством понятия «ось» делает круг, ибо само понятие «ось» определяется только через понятие «вращение» (как известно, ось — это пря­мая, вокруг которой происходит вращение). Таким образом, ясно, что в нашем определении получается круг: понятие «враще­ние» определяется посредством понятия «ось», а понятие «ось»— посредством понятия «вращение».

В определении определяющее и определяемое должны быть двумя различны ми и притом самостоятельными понятиями. Если это не соблю­дается, то получается ошибка, которая называетсяidem per idem,или тавтологией, именно: в определении получается только по­вторение того же слова, т. е. употребляются слова, имеющие то же самое значение. Например: «свет есть то, чему присущ свет»; «величина есть то, что способно уменьшаться и увеличиваться». Последнее определение представляет собой тавтологию, потому что уменьшение есть убавление величины, увеличение же есть прибавление величины, а потому, если мы определяем величину посредством того, что способно увеличиваться или уменьшаться, то очевидно, что в определяющем понятии содержится опреде­ляемое понятие.

3. Определение не должно быть отрицательным, оно дол­жно указывать признаки, присущие данному понятию, а не чуждые ему, ибо эти последние для нас неважны и, кроме того, их можно указать очень много. Напри­мер, возьмём определение «театр есть здание, не служащее для жилья». Если А будет здание, служащее для жилья, то не-А, или зданий, не служащих для жилья, будет бесчисленное мно­жество. Таким образом, это определение делается для нас непригодным. К числу определений, которые вследствие своего отрицательного характера непригодны, нужно отнести следую­щие: «жидкость есть то, что не твердо и не газообразно», «точка есть то, что не имеет частей и не имеет никакой величины». От­рицательные определения не раскрывают содержания понятия, они оставляют содержание понятия неопределённым. По­этому отрицательные определения не отвечают главной цели определения — раскрыть содержание определяемого понятия, сделать содержание понятия определённым..

Отрицательные определения могут быть употребляемы только тогда, когда определяемое понятие имеет отрицательный характер. Например, «чужестранец»—это человек, не принадлежащий к данной стране, д.

4. Определение должно быть ясным, т. е. в определении нельзя пользоваться выражениями двусмысленными, метафорическими и вообще мало по­нятными. Нарушение этого правила приводит к попытке сделать понятным неизвестное через посредство ещё менее известного (ignotum per ignotius). Например, выражения «архитектура есть застывшая музыка» и «нужда есть мать изобретения» — это есть образные выражения, которые не объясняют значения термина. Если же сказать, что «эксцентричность есть своеобразная идиосинкразия», то мы непонятное пытаемся объяснить посредством непонятного же.

Приёмы, заменяющие определения; Итак, чтобы наши определения были точны, они должны удовлетворять указанным четырём сословиям. Но не следует думать, что все наши понятия могут быть всегда определяемы указанным способом. Есть случаи, когда нам приходится знакомиться с содержанием понятия не посредством определения, а иными способами. Можно указать следующие способы, заменяющие определение.

1. Указание. Если, например, мы кого-нибудь желаем познакомить с тем, что такое тот или другой цвет, звук и т. п., то это мы будем в состоянии сделать только в том случае, если приве­дём его в соприкосновение с данным цветом, звуком и т. п., т. е. вставим его воспринимать то, с чем мы желаем его ознакомить. Такой способ ознакомления с известным понятием называется указанием. Указание употребляется во всех случаях, когда нам

приходится знакомить .кого-нибудь с предметами нёпосредственного восприятия:

2. Описание употребляется при ознакомлении с индивидуаль­ными предметами или при ознакомлении со свойствами, принад­лежащими какой-либо вещи. В таком случае приводятся возможно точно и полно признаки этой вещи, например описание Днепра у Гоголя, Рейнского водопада у Карамзина и т. п. В ботанике опи­сывается строение того или иного цветка, процесс опыления и т. п., в химии описывается та или иная реакция.

3. Характеристика приводит выдающиеся признаки какого-либо предмета или явления. Если нам нужно познакомить кого-нибудь с тем, что такое «воображение построительное» и «воображение воспроизводящее», то мы вместо определения можем указать на какую-нибудь существенную черту, присущую тому или другому виду воображения, например, говорим, что для построительного воображения существенным является новизна сочетания, а для воспроизводящего — точность. Какое-нибудь свойство является характерным для того или другого лица: для воина — мужество, для врача — гуманность и т. п. Характерной особенностью семей­ства крестоцветных растений являются цветы с четырьмя листоч­ками чашечки и четырьмя лепестками .венчика, расположенными крест-накрест, с двумя короткими и четырьмя длинными тычин­ками.

4. Сравнение употребляется в том случае, когда мы знакомимся

с тем или иным понятием при помощи сравнения его с другими понятиями, похожими на него. Мы можем дать понятие о тепло­проводности какого-либо тела при помощи сравнения её со светопрозрачностью, например, если скажем, что теплопроводность по отношению к тепловым лучам есть то же самое, что прозрачность по отношению к световым лучам. Сравнение употребляется глав­ным образом тогда, когда одно понятие уясняется при помощи другого понятия, более ясного, например, когда какое-либо абст­рактное понятие уясняется при помощи какого-либо конкретного. Например, «жизнь есть школа опыта», «право есть воплощение, нравственной идеи», «совесть есть внутренний суд».

5. Различение употребляется в том случае, когда мы знакомим кого-нибудь с содержанием какого-либо понятия, указывая на то различие, которое существует между данным понятием и другими, например, если мы говорим, что «энтузиазм» отличается от «фана­тизма» тем, что он вызывается чем-либо благородным и не пере­ходит за пределы умеренности.

Вопросы для повторения

Что такое содержание понятия? Что такое сложные и простые понятия? Какие понятия не могут быть определены? Что такое опре­деление? Перечислите условия правильности определения. Какие определения будут слишком узкие и какие слишком широкие? Когда определение делает круг? Почему признаки, входящие в определение, не должны иметь отрицательного характера? Назовите приёмы, заме­няющие определение, и укажите особенности каждого приёма.

 

Глава VI

О ДЕЛЕНИИ

Задача деления. От процесса определения отличается процесс деления (divisio). Различие между ними заключается в том, что определение раскрывает содержание понятия, а деление ра­скрывает его объём. Задача деления заключается в том, чтобы указать все виды, совокупность которых составляет объём дан­ного понятия. Так, например, понятие «треугольник» мы могли делить следующим образом:

Треугольник (А) –Прямоугольный (B)

-Остроугольный (C)

- Тупоугольный (D)

У нас было понятие «треугольник» (Л), и мы перечислили все частные понятия: В, С и D, входящие в объём этого более общего понятия, которое относится к ним, как род к своим видам.

То понятие, объём которого мы раскрываем, называетсядели­мым (totum dividendum), а те виды, которые получаются от деле­ния, называютсячленами деления (membra divisionis).

Основание деления. Когда мы производим деление рода на виды, то мы обращаем внимание на те признаки, которыми обла­дают одни виды и не обладают другие. Тот признак, который даёт нам возможность разделить род на виды, называетсяоснованием деления (fundamentum divisionis). Основанием вышеприведённого деления понятия «треугольник» была величина углов в треуголь­нике. Но можно, это же самое понятие делить по какому-нибудь другому основанию, например положить в основание деления от­ношение сторон треугольника по величине. Тогда деление пред­ставится в следующем виде:

Треугольник (A): Равносторонний (B)

Равнобедренный (C)

Разносторонний (D)

Процесс несколько усложняется, если полученные от деления виды в свою очередь делить на подвиды (этот процесс называется подразделением). Так, например, вид понятия «треугольник», именно тупоугольный треугольник (или какой-нибудь другой),. можно в свою очередь подразделить на подвиды: равнобедренный и разносторонний; разумеется, деление и подразделение будут относиться к одному понятию: дихотомия. В процессе деления иногда употребляется приём, который называется дихотомией и который заключается в деления данного понятия Л на противоречащие понятия В и не-В.Берём какое-нибудь понятие, которое нам надо разделить, на­пример понятие «человек»; выделяем в одну группу какой-нибудь из видов, заключающихся в этом понятии, например вид «славя­нин», а в другую группу — «не-славянин» — относим все прочие виды. Затем с этим вторым отрицательным понятием поступаем точно таким же образом: подразделяем понятие «не-славянин» на две группы; в одну из них относим, например, подвид «герма­нец», а в другую — все прочие остающиеся подвиды, соединяя их в одно понятие «не-германец»; затем с этим понятием поступаем точно так же, как и с предыдущим, и продолжаем наше деление до тех пор, пока оно не окажется исчерпанным.

Человек: Славянин

Не-славянин: Германец

Не-германец

И т. д.

Этот приём имеет тот недостаток, что оставляет каждый раз крайне неопределённой часть объёма делимого понятия, именно ту часть, которая обозначается частицей не, но, с другой стороны, значительно облегчает самый процесс деления, потому что придаёт ему исчерпывающий характер, почему его иногда на­зывают исчерпывающим делением. Что оно имеет ис­черпывающий характер, можно объяснить при помощи следую­щего примера. Если мы разделим всех обитателей Европы и Азии на расы — белую и жёлтую, то может оказаться, что некоторые племена не подойдут ни под одну из этих рас и мы не будем в состоянии поместить их в нашем делении, но этого не будет в том случае, если мы будем делить дихотомически.

Обитатели земного шара: Белые

Не-белые: Желтые

Не-желтые

При таком делении всякое новое племя должно будет войти в последнюю группу, которая не будет ни белой, ни жёлтой. В этом заключаются преимущества дихотомического деления.

Правила деления. Деление должно подчиняться следующим правилам:

1. Деление должно бытьадекватно, или соразмерно. Это зна­чит, что если мы перечисляем по какому-нибудь основанию или принципу виды данного родового понятия, то мы должны точно перечислить все виды, не уменьшая и не увеличивая их количе­ства, т. е. сумма видов должна равняться делимому роду.

Если при делении мы не перечислим всех видов, т. е. если эта сумма будет меньше,то у нас получится деление неполное; если же мы в объём делимого понятия введём виды, которые в нём на самом деле не содержатся, то у нас получится деление слишком обширное, т. е. указанная сумма будет больше. На­пример, положив в основание деления понятия «треугольник» ве­личину его углов, мы могли бы получить такое деление:

Треугольник: Остроугольный

Тупоугольный

Ясно, что это деление неполное, ибо здесь не хватает одного члена деления, потому что в объёме понятия «треугольник» нахо­дится ещё один вид, который при делении нами пропущен, именно прямоугольный треугольник.

Неполным было бы деление людей на порочных и добродетель­ных, деление научных теорий на истинные и ложные, потому что в этих делениях упускаются промежуточные ступени. Кроме лю­дей порочных и добродетельных есть люди, о которых нельзя сказать, что они порочны, но нельзя также сказать, что они доб­родетельны; кроме истинных и ложных теорий существуют еще теории частью истинные и частью ложные.

Обратная ошибка будет получаться в том случае, если мы, деля какое-либо понятие, вводим в его объём такой вид, который не входит в действительности в его объём. Если бы мы, например, разделили понятие «дерево» на «дуб», «ель», «фиалка», то оче­видно, что вид «фиалка» относится к объёму совсем другого по­нятия и что при делении понятия «дерево» он попал в число чле­нов его неправильно.

2. Члены деления должны исключать друг друга. Это требова­ние станет ясным, если мы возьмём для примера, следующее деление:

Книги: Французские

Немецкие

Словари и т. д.

Это деление неправильно, ибо понятие, например, «французские книги» и понятие «словари» не исключают друг друга: книга может быть и французской и словарём в одно и то же время. Или возьмём в пример также другое деление понятия «книги»:

Книги: Полезные

Понятные

Интересные и т. д.

Здесь один вид книг не исключает из своего объёма других ви­дов: полезная книга может быть в одно и то же время и понятной и интересной. Ошибки, как в первом, так и во втором из приведён­ных примеров деления произошли потому, что не было выдер­жано третье требование правильного деления, а именно:

3. Деление должно иметь одно основание. При делении поня­тий чаще всего повторяется ошибка, заключающаяся в том,чтов процессе деления меняется основание деления.

Произведём деление народов Европы:

Народы Европы: Магометане

Христиане

Французы

Немцы и т.д.

Это деление неправильно, ибо мы, взяв сначала основанием де­ления понятие «религия», затем меняем это основание на другое, именно на понятие «национальность».

Или другой пример:

Прямолинейные фигуры: Треугольники

Параллелограммы

Прямоугольники

Многоугольники

Это деление также неправильно, так как у нас здесь скрещи­ваются такие различные основания деления, как число сторон, направление сторон, величина углов. Такое деление называется перекрёстным;

Итак, третье условие правильности деления заключается в том, чтобы при последовательном перечислении ви­дов делимого понятия было выдержано одно основание деления. Но следует заметить, что одно осно­вание деления должно быть выдержано только при первом деле­нии понятия; уже при вторичном делении, т. е. при подразделении, основание деления должно измениться. Так, например, если мы разделили понятие «треугольник», взяв основанием деле­ния величину углов, на такие виды, как остроугольный, прямо­угольный и тупоугольный, то, желая далее продолжать деление какого-нибудь из этих членов деления, мы уже должны основание деления изменить. Так, понятие «остроугольный треугольник» мы можем делить ещё далее, если возьмём основанием деления уже не величину углов, а отношение сторон по величине.

Треугольник: 1) Тупоугольный

2) Прямоугольный

3) Остроугольный: а) равносторонний

б) равнобедренный

в) разносторонний

4. Деление должно быть непрерывным, т. е. при делении ка­кого-либо понятия нужно переходить к ближайшему низшему роду, в противном случае будет получаться то, что называется скачком в делении. Если бы мы понятие «природа» разде­лили на 1) «животные», 2) «растения», 3) «минералы», то в этом делении был бы слишком внезапный переход от понятия «при­рода» к понятиям «минералы», «животные». Чтобы исправить ошибку, следует вставить между понятием «природа» и членами вышеприведённого деления ещё два посредствующих звена.

Именно: понятия «мир неорганический» и «мир органический». Тогда деление приняло бы следующий вид:

Природа: Мир органический: животные

растения

Мир неорганический: минералы и проч.

Вопросы для повторения

Какова задача деления? Что называется делимым понятием?Чтоназывается членами деления? Что такое основание деления?Чтотакое подразделение? Что такое дихотомия? Его преимущества и недостатки. Перечислите правила деления. Приведите примеры ни каждое правило и укажите применение каждого правила.

Глава VII

О СУЖДЕНИИ

Познание и суждение. Если бы у нас были одни только пред­ставления и понятия, но не было бы их соединения или связи, то могли ли бы мы сказать, что у нас есть познание? Конечно, нет. Познание может быть только в том случае, если мы имеем дело с истинностью или ложностью; а вопрос об истинности или ложности возникает только тогда, когда между понятиями устанавливается известная связь; это бывает именно тогда, когда мы судим о чём-нибудь. Например, когда я произ­ношу слово «дом», то в понятии, выражаемом этим словом, нет ничего ни истинного, ни ложного. Когда же я говорю «дракон существует», «дракон имеет крылья», то я утверждаю нечто истинное или ложное. Следовательно, об истинности и ложности может быть речь только в том случае, когда мы имеем дело с суждением. Суждение всегда имеет дело с какой-либо объективной реальностью.

Суждение есть известное умственное построение; будучи вы­ражено в словах, оно называетсяпредложением.

Грамматический анализ предложения. В предложении мы всегда высказываем что-нибудь относительно чего-нибудь. То, от­носительно чего мы высказываем, называетсяподлежащим, субъектом, а то, что мы о нём высказываем, называетсяпредика­том, сказуемым. Типом простого предложения является предло­жение «Л есть и», «А не есть В». В этих предложениях А есть субъект (subjectum), В есть предикат (praedicatum); «есть» и «не есть» называетсясвязкой (copula), потому что она Служит для связывания подлежащего со сказуемым. Подлежащее обык­новенно обозначается символом S, а сказуемое — символом Р (начальные буквы слов subjectum, praedicatum).

Следует заметить, что, когда мы говорим о суждении, то мы имеем в виду логическую точку зрения, когда же мы гово­рим о предложении, то мы имеем в виду грамматическую точку зрения.

Форма суждений. Суждения, каковы бы они ни были, всегда представляют собой соединение субъекта с предикатом, но они видоизменяются .в зависимости от изменения субъекта, предиката и связи между ними. Поэтому нам для ознакомления с возможными формами суждений следует рас­смотреть возможные изменения субъекта, предиката и связи между ними.

Наши рекомендации