Анговая корреляция – основная идея, коэффициенты ранговой корреляции, их смысл.
Коэффициент ранговой корреляции Спирмена. Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ( ): где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.
Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi. Когда ранги всех значений xi и yi строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая,то ранги значений xi и yi совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.Из формулы видно, что для вычисления необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy)2. Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.Коэффициент ранговой корреляции целесообразно использовать в следующих случаях: - если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций; - когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.
32.Основные задачи регрессионного ана-лиза. Идея МНК получения уравнения регрессии. Понятие о нелинейной и множественной корреляции. Наряду с анализом связей между двумя рядами данных можно проводить анализ многомерных корреляционных связей. Наиболее простым случаем нахождения подобной зависимости является вычисление коэффициентов множественной корреляции между тремя переменными X, Y и Z. В соответствии с числом переменных вычисляются три коэффициента множественной корреляции. Собственно говоря, коэффициент множественной корреляции оценивает тесноту линейной связи одной переменной, например X, с двумя остальными, Y и Z, и обозначается как rx(yz) . При оценке тесноты линейной связи переменной Y с переменными Х и Z, коэффициент множественной корреляции обозначается как ry(xz)Вычисление коэффициентов множественной корреляции базируется на коэффициентах линейной корреляции между переменными Х и Y — rxy, Х и Z, — rxz, У и Z, — ryz. Для вычисления одного из коэффициентов множественной корреляции, например rx(yz) используется следующая формула: где rxy, rxz, ryz — коэффициенты линейной корреляции между парами переменных Х и Y, Х и Z, Y и Z. Коэффициент множественной корреляции принимает значения от 0 до 1. Значимость этого коэффициента оценивают по величине t-критерия Стьюдента с числом степеней свободы k = n - 3. Для применения множественного коэффициента корреляции необходимо соблюдать следующие условия: 1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений. 2. Предполагается, что все переменные имеют нормальный закон распределения. 3. Число варьирующих признаков в сравниваемых переменных должно быть одинаковым.