Графическое представление критерия U
На Рис. 2.5. представлены три из множества возможных вариантов соотношения двух рядов значений.
В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область наложения слишком мала, чтобы скрадывать различия между рядами. Есть шанс, что различия между ними достоверны. Точно определить это мы сможем с помощью критерия U.
В варианте (б) второй ряд тоже ниже первого, но и область перекрещивающихся значений у двух рядов достаточно обширна. Она может еще не достигать критической величины, когда различия придется признать несущественными. Но так ли это, можно определить только путем точного подсчета критерия U.
В варианте (в) второй ряд ниже первого, но область наложения настолько обширна, что различия между рядами скрадываются.
Ограничения критерия U
1. В каждой выборке должно быть не менее 3 наблюдений: n1•n2≥3; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.
2. В каждой выборке должно быть не более 60 наблюдений; n1•n2≤60. Однако уже при n1•n2>20 ранжирование становиться достаточно трудоемким.
На наш взгляд, в случае, если n1•n2>20, лучше использовать другой критерий, а именно угловое преобразование Фишера в комбинации с критерием λ,, позволяющим выявить критическую точку, в которой накапливаются максимальные различия между двумя сопоставляемыми выборками (см. п. 5.4). .Формулировка звучит сложно, но сам метод достаточно прост. Каждому исследователю лучше попробовать разные пути и выбрать тот, который кажется ему более подходящим.
Пример
Вернемся к результатам обследования студентов физического и психологического факультетов Ленинградского университета с помощью методики Д. Векслера для измерения вербального и невербального интеллекта. С помощью критерия Q Розенбаума мы в предыдущем параграфе смогли с высоким уровнем значимости определить, что уровень вербального интеллекта в выборке студентов физического факультета выше. Попытаемся установить теперь, воспроизводится ли этот результат при сопоставлении выборок по уровню невербального интеллекта. Данные приведены в Табл. 2.3.
Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?
Таблица 2.3
Индивидуальные значения невербального интеллекта в выборках студентов физического (щ=\4) и психологического (п2=12) факультетов
Студенты-физики | Студенты-психологи | ||||
Код имени испытуемого | Показатель невербального интеллекта | Код имени испытуемого | Показатель невербального интеллекта | ||
1. | И.А. | 1. | Н.Т. | ИЗ | |
2. | К.А. | 2. | О.В. | ||
3. | К.Е. | 3. | Е.В. | ||
4. | П.А. | 4. | Ф.О. | ||
5. | С.А. | 5. | И.Н. | ||
6. | Ст.А. | 6. | И.Ч. | ||
7. | Т.А. | 7. | И.В. | ||
8. | Ф.А. | 8. | К.О. | ||
9. | Ч.И. | 9. | P.P. | ||
10. | ЦА. | 10. | Р.И. | ||
11. | См.А. | 11. | O.K. | ||
12. | К.Ан. | 12. | Н.К. | ||
13. | Б.Л. | ||||
14. | Ф.В. |
Критерий U требует тщательности и внимания. Прежде всего, необходимо помнить правила ранжирования.
Правила ранжирования
1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1.
Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Например, если n=7, то наибольшее значение получит ранг 7, за возможным исключением для тех случаев, которые предусмотрены правилом 2.
2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.
Например, 3 наименьших значения равны 10 секундам. Если бы мы измеряли время более точно, то эти значения могли бы различаться и составляли бы, скажем, 10,2 сек; 10,5 сек; 10,7 сек. В этом случае они получили бы ранги, соответственно, 1, 2 и 3. Но поскольку полученные нами значения равны, каждое из них получает средний ранг:
Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:
3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле:
где N - общее количество ранжируемых наблюдений (значений). Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.
При подсчете критерия U легче всего сразу приучить себя действовать по строгому алгоритму.
АЛГОРИТМ 4