Критические значения коэффициентов корреляции для различных степеней свободы (n-2) и разных вероятностей допустимых ошибок
Число степеней свободы | Уровень значимости | ||
0,05 | 0,01 | 0,001 | |
0,9500 | 0,9900 | 0,9900 | |
0,7545 | 0,8745 | ,0,9509 | |
0,5760 | 0,7079 | 0,8233 | |
0,4821 | 0,6055 | 0,7247 | |
0,4227 | 0,5368 | 0,6524 | |
0,3809 | 0,4869 | 0,5974 | |
0,3494 | 0,4487 | 0,5541 | |
0,3338 | 0,4297 | 0,5322 | |
0,3246 | 0,4182 | 0,5189 | |
0,3044 | 0,3932 | 0,4896 |
Метод множественных корреляций в отличие от метода парных корреляций позволяет выявить общую структуру корреляционных зависимостей, существующих внутри многомерного экспериментального материала, включающего более двух переменных, и представить эти корреляционные зависимости в виде некоторой системы.
Один из наиболее распространенных вариантов этого метода — факторный анализ — позволяет определить совокупность внутренних взаимосвязей, возможных причинно-следственных связей, существующих в экспериментальном материале. В результате факторного анализа обнаруживаются так называемые факторы - причины, объясняющие множество частных (парных) корреляционных зависимостей.
Фактор — математико-статистическое понятие. Будучи переведенным на язык психологии (эта процедура называется содержательной или психологической интерпретацией факторов), он становится психологическим понятием. Например, в известном 16-факторном личностном тесте Р. Кеттела, который подробно рассматривается во второй части книги, каждый фактор взаимно однозначно связан с определенными чертами личности человека.
С помощью выявленных факторов объясняют взаимозависимость психологических явлений. Поясним сказанное на примере. Допустим, что в некотором психолого-педагогическом эксперименте изучалось взаимовлияние таких переменных, как характер, способности, потребности и успеваемость учащихся. Предположим далее, что, оценив каждую из этих переменных у достаточно представительной выборки испытуемых и подсчитав коэффициенты парных корреляций между всевозможными парами данных переменных, мы получили следующую матрицу интеркорреляций (в ней справа и сверху цифрами обозначены в перечисленном выше порядке изученные в эксперименте переменные, а внутри самого квадрата показаны их корреляции друг с другом; поскольку всевозможных пар в данном случае меньше, чем клеток в матрице, то заполнена только верхняя часть матрицы, расположенная выше ее главной диагонали).
Анализ корреляционной матрицы показывает, что переменная 1 (характер) значимо коррелирует с переменными 2 и 3 (способности и потребности). Переменная 2 (способности) достоверно коррелирует с переменной 3 (потребности), а переменная 3 (потребности) — с переменной 4 (успеваемость). Фактически из шести имеющихся в матрице коэффициентов корреляции четыре являются достаточно высокими и, если предположить, что они определялись на совокупности испытуемых, превышающей 10 человек, — значимыми.
Зададим некоторое правило умножения столбцов цифр на строки матрицы: каждая цифра столбца последовательно умножается на каждую цифру строки и результаты парных произведений записываются в строку аналогичной матрицы. Пример: если по этому правилу умножить друг на друга три цифры столбца и строки представленные в левой части матричного равенства, то получим матрицу, находящуюся в правой части этого же равенства:
Задача факторного анализа по отношению к только что рассмотренной является как бы противоположной. Она сводится к тому, чтобы по уже имеющейся матрице парных корреляций, аналогичной представленной в правой части показанного выше матричного равенства, отыскать одинаковые по включенным в них цифрам столбец и строку, умножение которых друг на друга по заданному правилу порождает корреляционную матрицу. Иллюстрация:
Здесь x1, х2, х3 и х4 — искомые числа. Для их точного и быстрого определения существуют специальные математические процедуры и программы для ЭВМ.
Допустим, что мы уже нашли эти цифры: x1 = 0,45, х2 = 0,36, х3 = 1,12, х4 = 0,67. Совокупность найденных цифр и называется фактором, а сами эти цифры — факторными весами или нагрузками.
Эти цифры соответствуют тем психологическим переменным, между которыми вычислялись парные корреляции. х1 — характер, х2 — способности, х3 — потребности, х4 — успеваемость. Поскольку наблюдаемые в эксперименте корреляции между переменными можно рассматривать как следствие влияния на них общих причин — факторов, а факторы интерпретируются в психологических терминах, мы можем теперь от факторов перейти к содержательной психологической интерпретации обнаруженных статистических закономерностей. Фактор содержит в себе ту же самую информацию, что и вся корреляционная матрица, а факторные нагрузки соответствуют коэффициентам корреляции. В нашем примере х3 (потребности) имеет наибольшую факторную нагрузку (1,12), а х2 (способности) — наименьшую (0,36). Следовательно, наиболее значимой причиной, влияющей на все остальные психологические переменные, в нашем случае являются потребности, а наименее значимой — способности. Из корреляционной матрицы видно, что связи переменной х3 со всеми остальными являются наиболее сильными (от 0,40 до 0,75), а корреляции переменной х2 — самыми слабыми (от 0,16 до 0,40).
Чаще всего в итоге факторного анализа определяется не один, а несколько факторов, по-разному объясняющих матрицу интеркорреляций переменных. В таком случае факторы делят на генеральные, общие и единичные. Генеральными называются факторы, все факторные нагрузки которых значительно отличаются от нуля (нуль нагрузки свидетельствует о том, что данная переменная никак не связана с остальными и не оказывает на них никакого влияния в жизни). Общие — это факторы, у которых часть факторных нагрузок отличны от нуля. Единичные — это факторы, в которых существенно отличается от нуля только одна из нагрузок. На рис. 5 схематически представлена структура факторного отображения переменных в факторах различной степени общности.
Рис. 5. Структура факторного отображения взаимосвязей переменных. Отрезки, соединяющие факторы с переменными, указывают на высокие факторные нагрузки.