Правила построения информационных моделей.

Информационная модель есть организованная по определенным правилам совокупность информации о состоянии и функционировании объекта управления и внешней среды. Она является для оператора своеобразным имитатором существенно важных для управления свойств реальных объектов, т.е. тем источником информации, на основе которого он формирует образ реальной обстановки, производит анализ и оценку сложившейся ситуации, планирует управляющие воздействия, принимает решения, обеспечивающие эффективную работу системы, а также оценивает результаты их реализации. Другими словами, оператор имеет дело не с объектом как таковым, а с его знаковым представлением. При любых видах работы с информацией всегда идет речь о ее представлении в виде определенных символи­ческих структур. Формирование представления инфор­мации — это ее кодирование.

Концептуальная модель — это совокупность представлений оператора о рабочих задачах, состоянии и функционировании рабочей системы и собственных способах управляющих воздействий на них. Образы и представления, составляющие содержание концептуальной модели, не являются только отражением реальности. Они играют роль обобщенных схем деятельности, сформированных в процессе обучения и тренировок. Концептуальная модель характеризуется огромной информационной избыточностью, но актуализируются и осознаются в тот или иной момент лишь образы и схемы деятельности, связанные с непосредственно решаемой задачей. При создании информационных моделей, необходимо руководствоваться следующими эргономическими требованиями:

♦ по содержанию информационные модели должны адекватно отображать объекты управления, внешнюю среду и состояние самой системы управления;

♦ по количеству информации они должны обеспечивать оптимальный информационный баланс и не приводить к таким нежелательным явлениям, как дефицит или избыток информации;

♦ по форме и композиции они должны соответствовать задачам трудового процесса и возможностям человека по приему, анализу, оценке информации и осуществлению управляющих воздействий.

Учет этих требований в процессе проектирования информационных моделей позволяет оператору выполнять возложенные на него функции с необходимой оперативностью и точностью, предотвращает появление ошибочных действий, обеспечивает эффективное функционирование системы "человек—машина". Опыт разработки и использования информационных моделей, а также анализ деятельности операторов с ними позволяют сформулировать ряд важнейших характеристик информационных моделей.

Отображение существенной информации и проблемной ситуации.В информационной модели должны быть пред­ставлены лишь основные свойства, отношения, связи управляемых объектов. В этом смысле модель воспроиз­водит действительность в упрощенном виде и всегда является некоторой ее схематизацией. Степень и характер упрощения и схематизации могут быть определены на основе анализа задач систем "человек — машина". При возникновении проблемной ситуации в управ­лении ее восприятие облегчается, если в информацион­ной модели предусмотрено отображение:

♦ изменений свойств элементов ситуации, которые происходят при их взаимодействии. В этом случае измене

ния свойств отдельных элементов воспринимаются не изолированно, а в контексте ситуации в целом;

♦ динамических отношений управляемых объектов, при этом связи и взаимодействия информационной модели должны отображаться в развитии. Допустимо и даже полезно утрирование или усиление отображения тенденций развития элементов ситуации, их связей или ситуации в целом;

♦ конфликтных отношений, в которые вступают элементы ситуации.

1. Этапы построения информационной модели.

Порядок построения информационной модели, как правило, следующий:

1) определение задач системы и очередности их решения;

2) определение источников информации, методов решения задач, времени, необходимого на их решение, а также требуемой точности;

3) составление перечня типов объектов управления, определение их количества и параметров работы системы;

4) составление перечня признаков объектов управления разных типов;

5) распределение объектов и признаков по степени важности, выбор критичных объектов и признаков, учет которых необходим в первую очередь;

6) выбор системы и способов кодирования объектов управления, их состояний и признаков;

7) разработка общей композиции информационных моделей;

8) определение перечня исполнительных действий операторов, осуществляемых в процессе решения задачи и после принятия решения;

9) создание макета, моделирующего возможную ситуацию, проверка эффективности избранных вариантов информационных моделей и систем кодирования информации. Критерием эффективности служат время, точность и напряженность работы оператора;

10) определение изменений по результатам экспериментов с композицией информационных моделей и систем ко­дирования, проверка эффективности каждого нового варианта на макете;

11) определение на макете уровня профессиональной подготовки операторов и его соответствия заданному;

12) составление инструкций работы операторов в системе управления.

Предложенный порядок построения информационных моделей намечен лишь в общем виде. Он может меняться в зависимости от специфики тех или иных систем управления и функций операторов.

Кодирование информации.

Под кодированием информации понимают операцию отождествления условных знаков (символов, сигналов) с тем или иным видом информации. Оптимальность кода предполагает обеспечение максимальной скорости и надежности приема и переработки информации человеком, т.е. максимальной эффективности выполнения операций зрительного поиска, обнаружения, различения, идентификации и опознания сигналов.

Существует ряд относительно независимых параметров, по которым должны строиться и оцениваться алфавиты кодовых сигналов: модальность сигнала; вид алфавита (категория кода); длина алфавита (основание кода); мерность кода; мера абстрактности кода; компоновка кодового знака и группы. Выбор модальности сигналов, вида алфавита и его длины, способа предъявления знаков и т.п. — все эти вопросы могут быть решены только при компромиссном соглашении, поскольку часто улучшение параметров кодов в одной задаче приводит к снижению эффективности решения другой.

Выбор модальности сигнала.Модальность (от лат. modus— способ) — одно из основных свойств ощущений, их качественная характеристика. Понятие модальности относится и ко многим другим психическим процессам. В системах управления информация, передаваемая оператору, воспринимается преимущественно зрительной системой. Нередко возникает необходимость перераспределения потоков информации, передаваемой человеку, между различными воспринимающими системами с целью снятия перегрузки со зрительной системы оператора. Вибротактильная форма предъявления информации представляет дополнительный источник информации о характере движущегося объекта управления (автомобиля, самолета, судна, железнодорожного состава и т.д.). Ее используют при кодировании органов управления разной формы, при дублировании зрительной и слуховой форм предъявления информации.

Определение меры абстрактности кода.Существуют два варианта: абстрактный код, не связанный с содержанием сообщения, и конкретный код, в определенной мере связанный с содержанием сообщения. В соответствии с мерой абстрактности кода выделяют абстрактные, схематические, иконические и пиктографические типы знаков. Конкретность, наглядность опознавательных признаков знака ускоряют процесс декодирования, поскольку в этом случае процессы различения, опознания и декодирования осуществляются одновременно. Вопрос о мере абстрактности имеет наибольшее значение для категории формы.

Кодирование сложного сообщения.Кодирование сложного сообщения включает три этапа: подбор оптимального алфавита или алфавитов, которыми кодируются отдельные элементы сообщения; установление оптимального соотношения между различными алфавитами в пределах одного сообщения; нахождение оптимальной логической структуры закодированного сообщения. Один из наиболее распространенных способов кодирования сложного сообщения — формулярный, т.е. объединение букв, цифр и условных знаков в компактные.

1. Кодирование формой и размером.

Кодирование формой.Легко различаются и распознаются простые геометрические фигуры, состоящие из не­большого количества элементов. Фигуры, составленные из прямых линий, различаются лучше, чем фигуры, имеющие кривизну и много углов. На этом основании треугольники и прямоугольники выделяются как формы, более легкие для восприятия, чем крути и многоугольники. При выборе между контурными и силуэтными знаками предпочтение следует отдавать последним

Кодирование размером.При использовании размера в качестве кодовой категории следует соотносить площадь знака с какой-либо характеристикой объекта, например с его размером, удаленностью и т.п. При трех градациях размеров фигур существует тенденция к переоценке наименьшего и к недооценке наибольшего размера, иначе говоря, к стягиванию крайних размеров фигур к среднему. При увеличении длины алфавита до четырех размеров отмечаются большие трудности в дифференцировании средних размеров по сравнению с крайними. При использовании более пяти градаций признака число ошибок опознания резко возрастает.

1. Буквенно-цифровое кодирование.

Выбор вида алфавита.Различные качественные и количественные характеристики управляемых объектов кодируются разными способами: условными знаками, буквами, цифрами, цветом, яркостью и т.п. Каждый способ кодирования называется видом алфавита, или категорией кодирования. Установлено, что при решении оператором различных задач проявляются преимущества тех или иных видов алфавитов. Поскольку различные признаки сигнала обеспечивают различную эффективность выполнения операций опознания, декодирования, поиска и т.п., алфавит выбирают с учетом стоящих перед оператором задач. Буквы используются для передачи информации о названии объекта, цифры — о его количественных характеристиках, цвет — о значимости. Геометрические фигуры могут быть использованы для кодирования информации в тех случаях, когда оператору необходима наглядная картина для быстрой переработки информации. Для решения задач опознания наиболее эффективны категории цвета и формы. В задачах зрительного поиска преимущество имеет цветовое кодирование. Самое мень­шее время поиска объектов — по цвету, а самое большее — по яркости и размеру. При использовании в качестве кодовых категорий формы, размера, цвета и пространственной ориентации фигур наибольшую эффективность выполнения операций идентификации, опознания и поиска обеспечивают категории цвета и формы, наименьшую точность имеет идентификация по размеру. Объединение в одном алфавите двух его видов — знакового и цифрового — приводит к существенному возрастанию скорости работы вследствие увеличения объема оперативного поля зрения.

Определение основания кода.Общий диапазон абсолютно различаемых градаций одномерного сигнала колеблется от 4 до 16 в зависимости от качества используемого признака. Допустимая длина алфавита должна определяться экспериментальным путем для каждого вида алфавита.

Выбор мерности кода.Наиболее целесообразным спосо­бом увеличения длины кодового алфавита является многомерное кодирование, т.е. увеличение числа значи­мых и меняющихся параметров сигнала. При использовании многомерных сигналов необходимо определять оптимальное соотношение числа переменных параметров сигнала и числа градаций каждого из параметров. Количество передаваемой информации различно для разных параметров многомерного сигнала. При построении многомерных алфавитов следует учитывать преимущества того или иного вида алфавита в решении различных задач.

Средства отображения информации: стрелочные индикаторы, счетчики, индикаторы с подсветом, печатающие устройства, графопостроители, знаковые светящиеся индикаторы, звуковые сигнализаторы.

Стрелочные индикаторы– обычно используются при считывании количественных и качественных показателей, поверочном (контрольном) чтении, сравнении показателей. Существует два типа стрелочных индикаторов:

· с движущейся стрелкой и неподвижной шкалой;

· с движущейся шкалой и неподвижной стрелкой.

В зависимости от характера поставленных задач могут использоваться стрелочные индикаторы двух разновидностей: либо с рукоятками управления, либо без них. Стрелочные индикаторы с рукоятками управления применяют для установки заданной величины параметра или для восстановления положения стрелки при ее отклонении от заданной величины. Лучшим типом индикатора в этом случае является индикатор с движущейся стрелкой и неподвижной шкалой. Точность и скорость считывания показаний со шкалы прибора зависят от ее вида, формы, размера, расстояния наблюдения, интервала между отметками. По точности считывания информации предпочтение отдается индикаторам с круглой шкалой, на втором месте – полукруглая шкала, на третьем – прямолинейная горизонтальная, на четвертом – прямолинейная вертикальная (за исключением приборов для контроля глубины, высоты, температуры – ассоциации мышления). Шкалы приборов градуируют штриховыми отметками, которые подразделяют на главные, средние и мелкие. Точность считывания зависит от размеров отметок и расстояния между ними. Оптимальная длина интервала между главными отметками 12,5 – 18 мм при дистанции наблюдения 750 мм. Увеличение числа мелких отметок приводит к снижению скорости и точности считывания. Между цветом фона шкалы и цветом делений и надписей нужно сохранять максимальную контрастность, причем контраст должен быть прямым.

Цифры (или какой-либо другой код) наносятся у основания главных отметок с наружной стороны шкалы. Точность считывания цифр зависит от их высоты, формата, толщины обводки, расстояния между соседними цифрами. Важное значение при считывании показаний со шкал имеет форма и расположение стрелок и указателей. Наибольшее преимущество перед остальными имеет клиновидная стрелка. Толщина ее острия должна быть не более ширины самой малой отметки шкалы, кончик стрелки не должен касаться отметок шкалы (расстояние между отметками и стрелкой от 0,4 до 1,6 мм). Стрелка должна быть того же цвета что и отметки шкалы и находиться как можно ближе к плоскости циферблата, чтобы свести к минимуму параллакс.

При конструировании и размещении стрелочных индикаторов необходимо учитывать следующие требования:

1. Стрелочные индикаторы на панели следует устанавливать в плоскости, перпендикулярной линии взора.

2. Градуировка шкал не должна быть более мелкой, чем того требует точность самого прибора.

3. Для шкал, установленных на одной панели, необходимо выбирать одинаковую систему делений и одинаковые цифры.

4. При одновременном контрольном считывании с нескольких приборов стрелки устанавливаются так, чтобы они при нормальной работе имели одинаковое направление.

5. Для облегчения контрольного считывания рабочие и перегрузочные диапазоны следует выделять цветом.

6. Необходимо, чтобы фон шкалы был матовым, а на стенках прибора не наблюдалось бликов.

7. Фон шкалы не должен быть темнее панели, в то время как каркас шкалы может быть темнее.

8. Освещение шкалы должно быть равномерным, а степень освещенности должна регулироваться.

Счетчики – используются для получения количественных данных, когда требуется быстрая и точная индикация.

Счетчики следует ставить как можно ближе к поверхности панели, чтобы свести к минимуму параллакс и тени, обеспечить максимальный угол видения. При последовательном считывании цифры должны следовать друг за другом, но не чаще двух за 1 секунду. Показания счетчиков по завершении работы оборудования должны сбрасываться автоматически, однако, необходимо предусматривать и возможность ручного сброса.

Целесообразен высокий цветовой контраст цифр и фона. Блескость должна быть сведена к минимуму.

Индикаторы с подсветом – применяются для отображения качественной информации, когда требуется немедленная реакция оператора. Имеется два основных типа индикаторов с подсветом:

· подсвечиваемые панели с одной или несколькими надписями;

· простые индикаторные (или сигнальные) лампочки.

Если индикаторы предназначаются для использования в условиях различной освещенности, в них следует предусмотреть регулировку яркости. Пределы регулировки яркости должны обеспечивать хорошую различимость информации, отображаемой на индикаторе, при всех предполагаемых условиях освещенности. Индикаторы не должны казаться светящимися, когда они не светятся, и восприниматься погасшими, когда светятся.

Для индикаторов на лампах накаливания рекомендуется либо использовать лампы с резервными нитями накаливания, либо сдвоенные лампы, чтобы в случае отказа одной нити лампы сила подсвета уменьшалась, но не настолько, чтобы оператор не мог работать. Индикаторные цепи проектируются так, чтобы лампы можно было снимать и заменять, не отключая электропитания, не вызывая опасности повреждения компонентов индикаторной цепи и не подвергая опасности обслуживающий персонал. Индикаторы, содержащие информацию о критических ситуациях необходимо располагать в зонах оптимальной видимости. Индикаторные лампы, которые используются редко или исключительно для целей технического обслуживания и регулировки, должны быть закрыты или невидимы при эксплуатации системы, но легко досягаемы. Расстояние между соседними лампами должно быть достаточным для однозначного их распознавания, правильной интерпретации индуцируемой информации и удобной замены.

Печатающие устройства (самописцы) – обеспечивают простое и быстрое получение информации в виде печатных материалов. Должна быть предусмотрена надежная индикация расхода носителя.

Графопостроители– используются для записи непрерывных графических данных. Вычерчиваемые штрихи не должны закрываться элементами конструкции графопостроителя. Контраст между изображением и фоном не должен быть менее 50% (отличие по яркости не менее чем в два раза).

Знаковые светящиеся индикаторы – предназначены для вывода смысловой буквенно-цифровой (символьной) информации с электронных вычислительных устройств (аналоговых, цифровых вычислительных машин, преобразователей, бортовых вычислителей и т.п.). В настоящее время широко применяются электронно-лучевые трубки и жидкокристаллические экраны.

Сигнализаторы звуковые – предназначены для привлечения внимания оператора. К ним относятся неречевые сообщения – источники звука, используемые на рабочем месте для подачи аварийных, предупреждающих и уведомляющих сигналов в тех случаях, когда:

· сообщение одномерное и короткое;

· требует немедленных действий;

· место приема информации слишком освещено или затемнено;

· зрительная система оператора перегружена.

Конструкция звуковых сигнализаторов должна исключать возможность создания ложной тревоги. Устройство для звуковой сигнализации и его электрические цепи должны быть сконструированы так, чтобы тревожный сигнал сохранялся при отказе системы или оборудования. В звуковых сигнализаторах при наличии ручного отключения должен быть обеспечен автоматический возврат схемы в исходное положение для получения очередного управляющего сигнала. Предупреждающие и аварийные сигналы должны быть прерывистыми. Уровень звукового давления сигналов на рабочем месте должен быть в пределах от 30 до 100 дБ на частоте 200 – 5000 Гц. Длительность отдельных сигналов и интервалов между ними должна быть не менее 0,2 с. Длительность звучания интенсивных звуковых сигналов не должна превышать 10 с. При маскировке шумом необходимо обеспечивать превышение порога маскировки звуковых сигналов от 10 до 16 дБ, предельно допустимые уровни звукового давления сигналов должны быть от 110 до 120 дБ на частоте 200 – 10000 Гц. Уровень звукового давления аварийных сигналов должен быть не выше 100 дБ на частоте 800 – 2000 Гц при длительности интервалов между сигналами 0,2 – 0,8 с, предупреждающих – не выше 80 – 90 дБ на частоте 200 – 600 Гц при длительности сигналов и интервалов между ними 1 – 3 с, а уведомляющих – не менее чем на 5% ниже по отношению к уровню звукового давления аварийных сигналов

Наши рекомендации