Понятие о случайном событии
ВВЕДЕНИЕ
Учебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.
Пособие состоит из четырех разделов:
1. Введение в теорию вероятностей.
2. Основные понятия и термины статистики.
3. Статистические методы обработки экспериментальных данных.
4. Компьютерная обработка данных анализа в специализированной программе EasyStatistics.
Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.
При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.
Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей.
Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами.
Каждый раздел содержит список вопросов и заданий для самопроверки.
Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.
РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ
Закономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.
Понятие о случайном событии
Опыт, эксперимент, наблюдение явления называются испытанием. Испытаниями, например, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).
Результат, исход испытания называется событием.
Для обозначения событий используются большие буквы латинского алфавита: А, В, С и т. д.
Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.
Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появление четного числа очков. События Аи В совместимые.
Два события называются несовместимыми, если появление одного из них исключает появление другого в одном и том же испытании.
Испытание: однократное бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.
Несовместимость более чем двух событий означает их попарную несовместимость
Испытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпадение одного очка, двух, трех и т. д. Эти события являются несовместимыми..
Два события А и В называются противоположными, если в данном испытании они несовместимы и одно из них обязательно происходит.
Событие, противоположное событию А, обозначают через А~.
Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В~ или А~ = В.
Событие называется достоверным, если в данном испытании оно является единственно возможным его исходом, и невозможным, если в данном испытании оно заведомо не может произойти.
Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.
Достоверное и невозможное события в данном испытании являются противоположными.
Событие А называется случайным, если оно объективно может наступить или не наступить в данном испытании.
Выпадение шести очков при бросании игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.
Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.