Коррозия –самопроизвольное разрушение металлических материалов, происходящее под химическим воздействием окр. Среды.

В результате коррозии металлы переходят в устойчивые соединения - оксиды или соли, в виде которых они находятся в природе. Коррозия съедает до 10 процентов производимого в стране металла.

Из-за чего появляется коррозия: вода, оксиды серы, углерода, азота, кислород воздуха, электролиты

Виды коррозии:

Газовая коррозия – коррозия в газовой среде при высоких температурах.

Атмосферная коррозия – коррозия металла в условиях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (особенно в присутствии агрессивных газов или аэрозолей кислот, солей и т.д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

^ Жидкостная коррозия – коррозия в жидких средах. По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.

^ Подземная коррозия – коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).

Билет 40

Химическая коррозия Многие металлы химически изменяются на поверхности за счет окисления кислородом. Кроме того, при этих процессах химически могут действовать жидкости (вода, кислоты, щелочи, растворы солей), газы или пары. Высокие температуры ускоряют процесс коррозии. При окислении меди, цинка, свинца или алюминия возникает на поверхности плотная, трудно разрушаемая пленка оксида, защищающая эти металлы от дальнейшей коррозии

Железные материалы при химической коррозии на влажном воздухе образуют гидрат окиси железа FeO(OH). Отсюда возникает при дальнейших химических процессах образование ржавчины стали. Ржавчина — это рыхлый пористый слой, который не обеспечивает никакой защиты от дальнейшей коррозии.

Рост толщины пленки, т.е. окисление поверхности металла, может проходить в соответствии с различными кинетическими зависимостями, или законами: линейным, параболическим, логарифмическим.
Согласно линейному закону, скорость процесса окисления постоянна во времени. Этот закон выполняется как при полном отсутствии оксидной пленки на поверхности, так и при наличии тонкой или незащитной (пористой, несплошной) оксидной пленки. Во всех этих случаях доступ кислорода к поверхности свободен и лимитирующей стадией процесса является поверхностная химическая реакция, протекающая с постоянной скоростью, т.е. окисление осуществляется в кинетическом режиме. По линейному закону происходит окисление щелочных и щелочноземельных металлов, а также ванадия, вольфрама и молибдена при высоких температурах. У первых оно обусловлено их разогревом из-за плохого отвода теплоты, вызванного образованием на поверхности рыхлых оксидных пленок, препятствующих Ии оттоку, у вторых – летучестью их оксидов при высоких температурах.

В соответствии с параболическим закономскорость процесса окисления обратно пропорциональна толщине оксидной пленки. Этот закон соблюдается, когда на поверхности металла при его окислении образуется пленка, обладающая защитными свойствами, т.е. сплошная и непористая, для которой α >1. согласно параболическому закону окисляются вольфрам, кобальт, никель, а также медь в интервале температур 300…10000С и железо – 500…1000оС

Логарифмический законимеет место, когда происходит либо уплотнение защитной оксидной пленки, либо появление в ней дефектов в виде пузырей или расслоений, тормозящих процессы встречной диффузии ионов кислорода и металла. При этом наблюдается сильное затухание процесса окисления, и рост толщины оксидной пленки осуществляется медленнее, чем по параболическому закону. В соответствии с логарифмическим законом окисляются медь при температуре ниже 100оС, тантал – ниже 150оС, железо – ниже 400оС, а также алюминий, цинк и никель ниже 150оС. Скорость процесса окисления в этом случае обратно пропорциональна времени его протекания.

Билет 41

Электрохимическая коррозия- самый распространенный вид коррозии. Электрохимическаякоррозия возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги,межкристаллитная коррозия, щелевая. Кроме того процессы электрохимической коррозии происходят в грунте, атмосфере, море.

Билет 42

Блуждающие токи или токи, рассеянные в проводящей среде, возникают в результате различных природных явлений или создаются промышленными электрическим установками, использующими проводящею среду (землю, морскую воду) в качестве токопровода.

Источниками естественных блуждающих токов являются вариации магнитного поля Земли, грозовые разряды, перемещения земных пород и другие природные явления. Максимальная напряженность естественных электрических полей не превышает 150мВ/км, поэтому очевидно, что они не представляют практической коррозионной опасности.

Промышленные блуждающие токи создаются линиями электротранспорта, заземлителями постоянного тока, системами катодной защиты и другими электрическими установками. Они могут быть очень значительными по величине и наносить серьезный ущерб металлическим сооружениям, находящимся в зоне их действия.

Интенсивность коррозии объектов в поле блуждающих токов определяется напряженностью поля, удельным сопротивлением среды, состоянием изоляционного покрытия объекта, взаимным расположением объекта и источника тока.

Билет 43

Гальванический метод защиты состоит в том, что на поверхности изделия путем электролитического осаждения из растворов солей создается тонкий слой защищаемого металла. Покрываемое изделие при этом служит катодом, а осаждаемый металл — анодом.

Металлизация — покрытие поверхности детали расплавленным металлом, распыленным сжатым воздухом. Преимуществом этого метода защиты металла является то, что покрывать расплавом можно уже собранные конструкции. Недостаток заключается в том, что получается шероховатая поверхность.

Оксидирование — защита оксидными пленками. Для этого естественную оксидную пленку, всегда имеющуюся на металле, делают более прочной путем обработки сильным окислителем, например концентрированной азотной кислотой, растворами марганцевой или хромовой кислот и их солей.

Фосфатирование состоит в получении на изделии поверхностной пленки из нерастворимых солей железа или марганца в результате погружения металла в горячие растворы кислых фосфатов железа или марганца.

По механизму защиты различают анодные и катодные металлические покрытия. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий не обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающим коррозионном элементе основной металл–покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счёт растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как правило, обладают сравнительно низкой стойкостью.Катодные металлические покрытия, электродный потенциал которых более электроположителен, чем потенциал основного металла, могут служить надёжной защитой от коррозии только при условии отсутствия в них сквозных пор, трещин и других дефектов, так как они механически препятствуют проникновению агрессивной среды к основному металлу. Примерами катодных защитных покрытий являются покрытия железа медью, никелем, хромом и т.п."

Анодное - калий
Катодное - платина

Билет 44

Легирование стали повышает ее антикоррозионные свойства. Например, совершенную стойкость к атмосферной коррозии показывают нержавеющие легированные стали, содержащие в большом количестве хром, который, образуя на поверхности оксидные пленки, приводит сталь в пассивное состояние. Существенно повышается (в 1,5...3 раза) коррозионная стойкость строительных сталей при введении в их состав меди (0,2...0,5 %). Повышенной стойкости нержавеющих сталей против коррозии способствуют также их однородность и небольшое содержание вредных примесей.

Жаростойкость (окалиностойкость) – это способность металлов и сплавов сопротивляться газовой коррозии при высоких температурах в течение длительного времени.Для повышения жаростойкости в состав стали вводят элементы, которые образуют с кислородом оксиды с плотным строением кристаллической решетки (хром, кремний, алюминий).
Степеньлегированости стали, для предотвращения окисления, зависит от температуры. Влияние хрома на жаростойкость хромистой стали показано на рис.20.2.
Чем выше содержание хрома, тем более окалиностойки стали (например, сталь 15Х25Т является окалиностойкой до температуры 1100…1150oC).
Высокой жаростойкостью обладают сильхромы, сплавы на основе никеля – нихромы, стали 08Х17Т, 36Х18Н25С2, 15Х6СЮ.

Жаропрочность – это способность металла сопротивляться пластической деформации и разрушению при высоких температурах.
Жаропрочные материалы используются для изготовления деталей, работающих при высоких температурах, когда имеет место явление ползучести.
Критериями оценки жаропрочности являются кратковременная и длительная прочности, ползучесть.
Кратковременная прочность определяется с помощью испытаний на растяжение разрывных образцов. Образцы помещают в печь и испытывают при заданной температуре. Прочность зависит от продолжительности испытаний.

Билет 45

Анодная защита применяется в химической, нефтехимической и смежных с ними отраслях промышленности в принципиально иных условиях, чем катодная защита; оба типа в агрессивных средах дополняют друг друга. Металл конструкции или сооружения должен иметь область пассивности с достаточно низкой скоростью растворения, которая лимитируется не только разрушением металла, но и возможным загрязнением среды. Широко применяют анодную защиту для оборудования, работающего в серной кислоте, средах на ее основе, водных растворах аммиака и минер, удобрений, фосфорной кислоте, в целлюлозно-бумажной промышленности и ряде отдельных производств (напр., роданида натрия). Особенно важна анодная защита теплообменного оборудования из легированных сталей в производстве серной кислоты; защита холодильников со стороны кислоты позволяет повысить рабочую температуру, интенсифицировать теплообмен, повысить эксплуатационную надежность.

Наши рекомендации