Для угольных шахт, опасных по газу и пыли
В состав ПВВ входят горючие материалы, не обладающие взрывчатыми свойствами (алюминий, древесная мука, парафин и др.), и совершенно инертные, не принимающие участия в химических реакциях при взрыве и способные претерпевать лишь фазовые превращения такие вещества как минеральные соли (пламегасители), вода и др. С точки зрения компонентного состава промышленные ВВ являются также и кинетически неоднородными системами.
Основные особенности детонации промышленных ВВ следующие:
1. Химические реакции при взрыве промышленных смесевых ВВ происходят в несколько стадий. Типичной схемой развития химических реакций является первоначальное разложение или газификация исходных компонентов в детонационной волне и последующее взаимодействие продуктов разложения между собой или с веществами (алюминий, ферросилиций и др.), не претерпевшими на первой стадии химических или фазовых превращений. Критическая плотность, точка максимума на кривой D=f(ρ0) и другие характеристики, связанные с экстремальным видом зависимости параметров детонации от плотности, не являются константами того или иного ПВВ, определяемыми его химическим составом. Они меняются с изменением физических характеристик ВВ (размер частиц, равномерность распределения компонентов и т.д.), поперечных размеров зарядов, свойств оболочки заряда.
2. На детонационную способность ПВВ может существенно влиять равномерность смешивания компонентов. Чем мельче частицы разнородных компонентов и чем более равномерное их распределение в объеме, тем быстрее завершается их сгорание, смешивание и взаимодействие продуктов сгорания.
3. Для промышленных ВВ характерны такие явления как растянутость зоны химической реакции, большой интервал между dКР и dПР (отношение этих величин может достигать 5-10). Например, dКР тонкодисперсных аммонитов в открытых зарядах при рабочей плотности составляет 10-15 мм, а максимальная скорость детонации наблюдается при заряде диаметром 80-100 мм. Гранулированные смеси устойчиво детонируют в открытых зарядах диаметром 40-150 мм и достигают максимальной скорости детонации в зарядах диаметром более 200 мм, сильная зависимость этих характеристик от технологии изготовления; экстремальная зависимость скорости детонации и бризантности от плотности заряда при dЗ<dПР (рис.17 и 18) и ряд других.
4. Для многих ПВВ спад скорости детонации (рис.17) или бризантности (рис.18) после максимума может быть достаточно резким, а, начиная с некоторой плотности, детонация в заряде данного диаметра вообще становится неустойчивой. В связи с этим явлением для промышленных ВВ ввели понятие критической плотности ρКР. Нормальный характер зависимости D=f(ρ0) относится к области идеальной детонации.
5. Многостадийность приводит к усилению (по сравнению с индивидуальными порошковыми ВВ) зависимости критических условий распространения и параметров детонации от размеров частиц компонентов.
6. dКР и dПР зависят не только от химического состава ВВ, но и от плотно-
сти заряда. С возрастанием плотности ПВВ значения dКР и dПР увеличиваются.
7. Установлено влияние плотности ВВ на минимальный инициирующий импульс: при увеличении плотности увеличивается минимальный инициирующий импульс (МИИ), рис.19.
Рис.17 Зависимость скорости детонации от плотности заряда ВВ а – (1) победит ВП-3, (2) аммонит ПЖВ-20, (3) победит ВП-1; б – в зарядах аммонита ПЖВ-20 различного диаметра: (1) 100 мм, (2) 40 мм, (3) 20 мм.
Рис.18 Зависимость бризантности Б от плотности ВВ: 1 – победит №6; 2 – победит ПУ-2; 3 – аммонит №8.
Рис.19 Зависимость минимального инициирующего импульса при взрыве гремучей ртути от плотности заряжания победита ВП-3.