Технологическое оборудование.

Процессы и аппараты.

Технологическое оборудование.

Выполнил: Федюшин Р.И.

Химико-технологические процессы

Классификация

Характерной особенностью технологических процессов в производствах являются химические превращения, происходящие в результате химических реакций и приводящие к образованию веществ с отличными от исходных продуктов свойствами. Химическое превращение сопровождается физическими, химическими и тепловыми процессами, которые вместе с химической реакцией составляют физико-химический процесс.

Процессы химической технологии классифицируются в соответствии с законами, лежащими в их основе. Такая классификация позволяет выделить следующие группы процессов:

- гидромеханические

- тепловые

- массообменные

- механические

- химические

Гидромеханические процессы – в разделе «гидравлика» рассматривают вопросы равновесия жидкости в состоянии покоя.

«Гидродинамика» - изучает движение жидкостей и газов, разделение жидких и газовых неоднородных систем, перемещение их через пористые перегородки.

Тепловые процессы – включают в себя нагревание, охлаждение реакционных масс, выпаривание растворов, конденсация паров и другие процессы, протекающие при подводе или отводе тепла. Тепловые процессы основываются на законах теплопередачи.

Массообменные и диффузионные процессы – характеризуются переносом исходных компонентов внутри фазы из одного состояния в другое средством диффузии. К этой группе относятся процессы абсорбции, перегонки, ректификации, экстракции, кристаллизации, адсорбции, десорбции и сушки.

Механические процессы – измельчение твердых тел, транспортировка, разделение и смешение сыпучих материалов, подчиняются законам механики твердых тел.

Химические процессы – протекают в соответствии с законами химической кинетики и зависят от процессов тепло и массопереноса.

Процессы химической технологии в зависимости от способа организации делятся на периодические и непрерывные. Периодические проводятся в аппаратах, которые работают в циклическом режиме. Непрерывные осуществляются в условиях непрерывной загрузки исходных материалов в аппаратах и выгрузки материалов из аппарата.

Конструкционные материалы

В химической технологии перерабатывается большое количество органических и неорганических продуктов. Эта переработка проводится в широких диапазонах температур (от 200° до 2500°) при давлении от 101,3 до 600 МПа, иногда в сильно - агрессивных средах. Для проведения химических реакций и последующей переработке полученных смесей используется различная аппаратура, которая должна удовлетворить ряд требований, основными из которых являются механическая надежность, долговечность, конструктивное совершенство, простота изготовления, удобство транспортировки и монтажа, удобство эксплуатации.

Механическая надежность – характеризуется прочностью, жесткостью, устойчивостью, герметичностью. Для деталей аппаратов подверженных сжимающим нагрузкам важна их жесткость, т.е. способность сохранения первоначальной формы, устойчивость конструкции. Важным качеством является герметичность. Это необходимое условие для аппаратов и трубопроводов, работающих под избыточным давлением или вакуумом.

Долговечность – зависит от ряда факторов и для отдельных производств. Для большинства типов оборудования химических заводов длительность эксплуатации 7-10 лет.

Конструкционное совершенство – характеризуется простотой устройства, малой массой и габаритами, небольшими затратами дорогих материалов, технологичностью исполнения.

Коррозийная стойкость металлических материалов характеризуется скоростью коррозии и глубинными показателями коррозии.

Химическая аппаратура должна удовлетворять эксплуатационным показателям: обеспечивать заданную производительность, расходы коэффициента по сырью, минимальные эксплуатационные расходы, удобство обслуживания, надежность и безопасность в работе.

Маркировки сталей

С точки зрения коррозионной стойкости особое значение в химическом машиностроении имеют высоколегированные стали. Легирующие элементы обозначают буквами:

Х – хром

Н – никель

М – молибден

Г – марганец

С – кремний

Т – титан

Б – ниобий

В – вольфрам

Д – медь

Ю – алюминий

Чугуны –при увеличении углерода в железных сплавах до 2,8 – 3,7%.Стоимость их намного дешевле, они не обладают пластичностью, детали из них изготавливают только ковкой.

Температура в аппаратах, изготовленных из чугунов, не превышает 250° и давление 0,6 МПа. Низколегированные стали и чугуны имеют недостаточно облагороженных добавок и называются черными металлами.

Цветные металлы

В химической промышленности помимо сталей и чугунов применяют: алюминий, тантан, никель, свинец, а также сплавы на их основе – латунь, бронза.

Алюминий – стоек к действию кислот (фосфорной, уксусной), сернистых соединений, органических соединений, плохо сваривается, плохие литейные свойства, применяют до 200°.

Медь – хорошо прокатывается, хорошо тянется, штампуется, но плохо обрабатывается из-за большой вязкости. Медь необходима для изготовления аппаратов работающих при низких температурах от 180° до 250°С.

Титан– по прочностным качествам приближается к стали. Он стоек против азотной кислоты, нитратов, хлоридов, органических кислот и мочевины. Используется при изготовлении труб, листа, проката.

Тантан– характеризуется прочностью, тугоплавкостью, очень дорог, употребляется в виде фольги.

Пластмассы – они обладают низким коэффициентом проводимости, поэтому с успехом применяются как теплоизоляционные материалы.

Трубопроводы

Трубопроводами называются участки труб соединенных между собой трубопроводной арматурой и предназначенные для транспортировки жидкостей, газов и сыпучих веществ.

По назначению трубопроводы бывают: магистральные, межзаводские, межцеховые, межустановочные, технологические обвязочные.

По изготовлению – бесшовные и сварные.

По материалам – металлические и неметаллические.

По расположению – наземные и подземные.

По эксплуатации – холодные (минус 50°) и горячие (более 50°).

Трубопроводы для застывающих жидкостей оснащаются параспутниками.

Трубопроводы характеризуются условным давлением и диаметром.

Ру– максимальное рабочее технологическое давление, которое может выдержать трубопровод.

ДУ – внутренний диаметр трубы.

Соединения трубопроводов.

разъемныенеразъемные

Прокладочные материалы

. Уплотнительные материалы применяются для герметизации соединений и систем, что в свою очередь обеспечивает бесперебойную работу оборудования.

При выборе прокладок, также как и для других де­талей фланцевого соединения, необходимо иметь в виду обязательные характеристики: рабочая среда, номинальное давление, рабочая температура, соот­ветствие уплотнительной поверхности фланца.

Также уплотнительные материалы должны от­вечать следующим необходимым требованиям: упругость, стойкость к среде, в которой работают, сохранение своих физических свойств при рабо­чей температуре среды и антикоррозионной стойкости. При использовании металлических прокладок, металл не должен деформировать уплотняющие поверх­ности фланца, поэтому металл прокладок должен иметь твердость ниже, чем металл уплотняемых поверхностей фланцев.

Определения

Уплотнительные материалы— вещества, используемые для герметизации вакуумных сис­тем, трубопроводной арматуры, резьбовых со­единений труб и т. п. Уплотнительные материалы применяют также для облегчения монтажа и раз­борки резьбовых и других соединений. Обычно применяют пластичные соединения, содержащие до 20 % порошка графита, дисульфида молибдена, мягких металлов и т. п.

Фторопласт-4

Фторопласт-4 обладает исключительной стой­костью ко всем кислотам, растворителям, нефтеп­родуктам, щелочам (кроме щелочных металлов). Обладает достаточно широким диапазоном темпе­ратур от -269 до +260 °С, инертностью, стойкостью к водяному пару, климатическим и бактериальным воздействиям, достаточно высокой прочностью, отличными диэлектрическими, антифрикционны­ми и антиадгезионными свойствами.

Лента ФУМ

Применяется для уплотнения резьбовых соеди­нений в пищевой и медицинской промышленнос­ти, на технологических трубопроводах для транс­портировки агрессивных газовых и жидких сред в диапазоне температур от -60 до +200 °С и при высоких давлениях до 10 МПа (100 кгс/см2).

Представляет собой ленту, изготовленную из фторопласта, содержащего смазку. ФУМ является уплотнителем для различных типов резьбовых со­единений из всех материалов.

Уникальные свойства фторопласта позволяют использовать данный материал в качестве уплотнительного элемента. Выпускаются в виде:

• жгутов круглого и прямоугольного сечения;

•ленты.

Жгут ФУМ служит в качестве прокладок для неподвижных уплотнений и сальниковых набивок в насосах и арматуре, работающих при повышен­ных температурах и агрессивных средах.

Картон

Если по условиям работы прокладкам требуют­ся огнестойкие свойства, то для их изготовления рекомендуется применять:

•асбестовый картон (ГОСТ 2850-80) марок КАОН-1,КАОН-2;

• асбестоармированное полотно (ГОСТ2198-76) представляет собой прорезиненную и прографитизированную ткань полотняного или саржево­го переплетения на основе латунной проволоки.

Резина

Используется для изготовления прокладок под фланцевые соединения, можно разделить на не­сколько видов: теплостойкая, маслобензостойкая, морозостойкая, кислотно-щелочестойкая и пище­вая. Этот материал обладает высокой эластичнос­тью, что позволяет легко достичь плотности между металлической поверхностью фланца и прокладкой, не применяя особых усилий при затяжке. Материал обладает высокой устойчивостью к различным аг­рессивным средам, а также является практически непроницаемым для газов, паров и жидкостей.

В зависимости от твердости резина подразделя­ется на мягкую, средней твердости и повышенной твердости.

В зависимости от стойкости к воздействию мас­ла и бензина -маслобензостойкая резина подраз­деляется на марки А и Б.

Для фланцевых соединений систем газорас­пределения с рабочим давлением до 6 кгс/см2 (0,6 МПа) рекомендуется применять прокладки, изготовленные из листовой маслобензостойкой резины (МБ) марок А и Б (без тканевой основы) по ГОСТ 17133-83 и ГОСТ 7338-77 толщиной 3-5 мм.

Примечание. Поскольку чрезмерное сжатие ухудшает свойства резины, деформацию ее необ­ходимо ограничить 30-50 % допускаемой.

Примечание. Основным минусом некоторых неметаллических прокладок можно считать нали­чие в них асбеста, который уже запрещен во многих зарубежных странах в связи с тем, что асбест яв­ляется неэкологическим материалом и вреден для здоровья человека.

Металлические прокладки

Металлические прокладки обеспечивают высо­кую герметизацию в условиях высокого давлениях и температуры. Для уплотнения соединения дета­лей, оборудования установок сжиженных газов и на газопроводах всех давлений рекомендуемыми материалами для изготовления металлических прокладок.

Фасонные части трубопровода

Крестовина – делит поток на три потока

Тройник – разделяет поток на два потока

Переходник (фитинг)– предназначен для перехода с одного диаметра трубы на другой.

Отвод (колено)– изменяет поток на 90°

Отвод (калач)– изменяет поток на 180°

Компенсатор – устройства, предназначенные для снижения температурных деформаций (п-образные, линзообразные, лирообразные, сальниковые).

Трубопроводная арматура

На трубопроводах устанавливается арматура различного назначения и устройства. Она служит для периодического включения и отключения потока, протекающего по трубопроводу (запорная), поддержания заданного давления, температуры или расхода (регулирующая), предупреждения повышения давления выше допустимых пределов (предохранительная), специальная (обратный клапан).

Технологическое оборудование. - student2.ru

а) Стальная клиновая задвижка б) обратный поворотный клапан в) вентиль обтекаемой формы г) проходной сальниковый кран

Регулирующая арматура

К регулирующей арматуре относятся: регулирующий клапан, который состоит из мембранно-пружинного организма, верхней и нижней крышки, прорезиненной мембраны, диска, направляющего стакана, штока, соединительной муфты. Клапан состоит из: золотника, кольца, седла и мембранного привода.

Клапан запорный проходной

Технологическое оборудование. - student2.ru

Предохранительная арматура

К ней относится предохранительный клапан, предназначенный для автоматической защиты оборудования и трубопровода от превышения давления свыше заранее установленной величины посредством сброса избытка рабочей среды.

Устройство клапана. Клапан состоит: из корпуса, седла, упорного закрепляющего штифта, направляющего кольца, тарелки клапана, направляющей втулки, штока, пружины, гайки для регулирования клапана и устройства для подрыва клапана от руки.

Насосы

Насосы - это машины, предназначенные для перемещения жидкостей.

Конструкции насосов классифицируются в соответствии со способами передачи энергии жидкости:

Центробежные или лопастные – где кинематическая энергия сообщается жидкости с помощью вращающихся лопастей.

Поршневые (плунжерные) – где энергия передается путем периодического изменения объема рабочих камер.

Насосы общего назначения – предназначены для перекачивания воды и неагрессивных жидкостей.

Нефтяные насосы – предназначены для перекачивания нефти, нефтепродуктов, сжиженных углеводородных газов.

Работа насосов характеризуется следующими показателями:

N – Мощность (кВт)

Q – Подача (производительность м³/час)

h – Частота вращения вала (оборот/мин)

H – Напор в метрах столба жидкости (высота на которую подается жидкость)

Марки нефтяных насосов:

НГ – нефтяной горячий насос (более 200°)

НК – нефтяной консольный (подшипники находятся по одну сторону от рабочего колеса)

НД –нефтяной - двухнапорный (опоры с двух сторон, может быть до 9 рабочих колес)

НСД – нефтяной секционный с двухсторонней подачей жидкости

НПС – нефтяной секционный с плоским разъемом корпуса

НКЭ – нефтяной консолный на одном валу с электрическим двигателем.

Центробежный насос

Технологическое оборудование. - student2.ru

Всасывающий патрубок

Сальник

Корпус

Рабочее колесо

Вал

Лопасти рабочего колеса

Нагнетательный патрубок

Центробежный насос состоит из корпуса, имеющего спиралевидный канал 3, в котором вращается рабочее колесо 4 , укрепленное на валу 5 . На рабочем колесе 4 укреплены лопасти 6, между которыми располагаются каналы для прохода жидкости. Подача жидкости в насос осуществляется через всасывающий штуцер 1, соединенный с центральной частью рабочего колеса. Нагнетательный штуцер 7, расположенный тангенциально по отношению к рабочему колесу служит для отвода жидкости из насоса. Для уплотнения вала рабочего колеса имеются сальники 2.

Поршневые насосы

Технологическое оборудование. - student2.ru

Поршневые насосы подразделяются на приводные, (работающие от электродвигателя) и прямодействующие паровые.

Приводные насосы по количеству цилиндров бывают одно, двух, трех, четырех цилиндровые. По расположению цилиндров – вертикальные и горизонтальные. По конструкции насосы бывают собственно-поршневые, плунжерные, диафрагмовые.

Пуск парового насоса.

Готовим паровую машину к пуску:

1) открываем продувочные краны на цилиндрах паровой машины;

2) открываем задвижку на остром паре, так, чтобы поршень не начал двигаться, и прогреваем цилиндр до тех пор, пока пар пойдет без конденсата.

Одновременно готовим к пуску гидравлическую машину:

1) открываем задвижку на всасывание и на нагнетание;

2) подаем охлаждение;

3) закрываем продувочные краны;

4) открываем кран до манометра, и открываем задвижку на линии мятого пара, чтобы поршень начал двигаться. И число было 16-20 ходов в минуту. Если поршень не начал двигаться, то нужно закрыть задвижку на мятом паре, открыть продувочные краны, выпустить весь пар, а затем вручную двигать поршень.

Компрессоры

Технологическое оборудование. - student2.ru

Компрессоры - это машины, предназначенные для сжатия и перемещения газов. По принципу действия они бывают центробежные, поршневые; по перекачиваемой среде газовые и воздушные.

Центробежные компрессоры подразделяются на вентиляторы - (низконапорные машины p=0,1-0,15 атм.), газодувки и воздуходувки (средние напорные машины p=0,1-2,5 атм.), турбокомпрессоры – (центробежные p=4-30 атм.), вакуум-насосы - это машины предназначенные для откачивания газов из емкостей под p чуть ниже атмосферного и сжатия их до атмосферного.

Эксгаустеры - высоконапорные вакуумные машины, для откачивания газов с p ниже атмосферного, сжатия их до атмосферного давления и чуть выше.

Поршневые компрессоры по расположению бывают вертикальные и горизонтальные. По числу сжатия бывают 1-ступенчатые и многоступенчатые. Поршневые компрессоры по создаваемому давлению бывают низконапорные (p до 8 атм.); средненапорные (p от 8 до 80 атм.); высоконапорные (p от 80 до 1000 атм.) и сверхнапорные (p свыше 1000 атм.).

По числу ступеней сжатия бывают от 1 до 17 ступеней. По расположению цилиндров бывают горизонтальные, вертикальные, угловые, V-образные, W- образные, звездообразные, оппозитные (поршни располагаются по обе стороны от коленчатого вала).

Отстаивание

Отстаивание – наиболее дешевый процесс разделения неоднородных систем.

Технологическое оборудование. - student2.ru

Отстойники периодического действия представляют собой низкие бассейны без перемешивающих устройств. Он заполняется суспензией, которая отстаивается в состоянии покоя в течение времени, необходимого для аппарата. После чего сливают осветленную жидкость через сифонную трубку или шланг. Осадок представляет собой шлам, его выгружают вручную. С увеличением температуры вязкость жидкости уменьшается, а скорость осаждения увеличивается.

Фильтрование

Технологическое оборудование. - student2.ru

Процесс разделения суспензии с использованием пористых перегородок, которые задерживают твердую фазу суспензии и пропускают её жидкую фазу, называется фильтрованием.

Процесс осуществляется на фильтре, состоящем из сосуда, в котором имеется ложное днище. На днище уложена фильтровальная перегородка. Под действием разности давлений по обе стороны фильтрующей перегородки жидкость – фильтрат проходит через её поры, а твердые частицы суспензии задерживаются в ней, образуя слой осадка. Скорость поддерживается постоянной, если по мере накопления слоя осадка, увеличивать перепад давления.

Сепарирование.

Сепарированием называется процесс разделения двух несмешивающихся жидкостей (эмульсия) различной плотности.

Технологическое оборудование. - student2.ru

Эмульсия, подлежащая разделению, вводится в корпус барабана 5 по центральной трубке 3, проходит под нижней конической перегородкой 6 и поступает во внутреннюю полость барабана. Здесь под действием центробежной силы происходит расслаивание эмульсии. Тяжелая жидкость отбрасывается к периферии, попадает в канал между корпусом 5 и перегородкой 4 и удаляется через отверстие 1. Легкая жидкость скапливается в центральной части барабана, поднимается вверх и отводится через отверстие 2.

Центрифугирование.

Центрифугированием называется процесс разделения неоднородных систем в поле центробежной сил.

Технологическое оборудование. - student2.ru

В непрерывно действующей центрифуге имеются конический вращающийся барабан 4 и конический разгрузочный шнек 6, размещенный внутри барабана. Суспензия вводится по трубе 7 внутрь шнека и под действием центробежной силы выбрасывается через окна 3 во внутреннюю полость барабана 4. В барабане происходит отстаивание суспензии. Осветленная жидкость под действием центробежной силы перемещается к окнам 8, перетекает в кожух 5 и удаляется через штуцер 9. Осадок непрерывно перемещается в барабане справа налево с помощью шнека, который вращается с частотой, несколько меньшей частоты вращения барабана. Через окна 2 осадок выбрасывается в кожух 4 и выводится из центрифуги через штуцер 1.

Отстойный газоход

Технологическое оборудование. - student2.ru

Устройством для очистки газа от пыли является отстойный газоход. На пути запыленного газа устанавливают камеру с перегородками, изменяющими направление, и сборниками пыли. За счет увеличения скорости потока падают частицы пыли, сохраняя прямолинейное движение за счет инерции, ударяются о перегородки и собираются в сборники. Эти устройства применяются для предварительной грубой очистки газов.

Пылеосадительныя камера

Технологическое оборудование. - student2.ru

Более качественная очистка газов достигается в пылеосадительных камерах.

Устройство пылеосадительной камеры основано на принципе развития максимальной площади осаждения, в целях повышения производительности.

Аппарат с горизонтальными полками делится на ряд каналов малой высоты. Поступление запыленного газа регулируется клапанами. Осажденная пыль периодически выгружается через дверцы.

Циклон

Технологическое оборудование. - student2.ru

Рукавный фильтр

Технологическое оборудование. - student2.ru

Запыленный газ нагнетается вентилятором через входной газоход 1, в камеру 2. Далее газ проходит через рукава 3, нижние концы которых закреплены на патрубках распределительной решетки 4. Пыль осаждается в порах ткани, а очищенный газ через трубку 6, удаляется из аппарата. Пыль удаляется через патрубок 7.

Мокрая очистка газов.

Барботажный пылеуловитель

Технологическое оборудование. - student2.ru


Состоит из корпуса 4, внутри которого расположено перфорированное днище 6. Запыленный газ поступает под днище через штуцер 1 и соприкасается с жидкостью, подаваемой на днище, образуя пенный барботажный слой. Жидкость захватывает твердые частицы и удаляется через штуцер 5, а некоторая ее часть, прошедшая через решетку уходит через штуцер 7 в днище аппарата. Очищенный газ удаляется из аппарата через штуцер 3.

Мокрая очистка газов применяется для тонкой очистки газа, но при этом происходит его увлажнение. Мокрая очистка газов проводится в аппаратах различных конструкций – скрубберах, башнях орошения, барботажных пылеуловителях.

Электрическая очистка газов

Электрическая очистка газов основана на ионизации молекул газа и сообщении частицам пыли электрического заряда. Электрически заряженные частицы под действием электрического поля осаждаются на противоположно заряженном электроде, теряют свой заряд и удаляются из газового потока. Ионизация газа возникает в газе, помещенном между электродами, соединенными с источником постоянного тока высокого напряжения. Для электрической очистки газов используется коронный заряд, возникающий в неоднородном электрическом поле, обеспечивающем прохождение тока между электродами, но не вызывающего между ними дугового электрического разряда – пробоя.

Коронирующие электроды

Встряхивающее устройство

Высоковольтные изоляторы

Внутри каждого трубчатого элемента точно по центру подвешивается выполненный из коррозионно-стойкого материала коронирующий электрод 2, укрепленный на конструкции 3 и изоляторах 5. Для удаления пыли и очистки коронирующего электрода 2 имеется встряхивающее устройство 4. Запыленный газ поступает в нижнюю часть фильтра и затем подается в трубчатые элементы, где происходит ионизация. Частицы пыли получают электрический заряд и направляются к осадительному трубчатому элементу. На заземленном трубчатом элементе частицы теряют заряд и оседают, а затем ссыпаются в нижний бункер аппарата и удаляются из него через пылевые затворы.

Тепловые процессы

Подвод и отвод тепла в химических аппаратах играют важную роль. Управление скоростью химических реакций, процессами разделения смесей выпариванием, перегонкой, ректификацией и др., осуществляются с помощью подвода и отвода тепла.

Перенос тепла, происходящий между телами, с различной температурой называется - теплообменом. Движущей силой этого процесса является разность температур, причем тепло самопроизвольно переходит от более нагретого к менее нагретому телу. Тела, участвующие в теплообмене называются - теплоносителями. В непрерывно действующих аппаратах температуры в различных точках не изменяются во времени, поэтому процессы теплообмена в таких аппаратах являются установившимися. В аппаратах периодического действия, где температуры меняются во времени, осуществляются неустановившиеся процессы.

Теплоносители бывают горячие и холодные. Горячие в процессе теплообмена тепло отдают, а холодные принимают. В процессах нефтепереработки непосредственный контакт с теплоносителем не возможен, теплообмен осуществляется в теплообменных аппаратах, через стенку.

В основе тепловых процессов лежат законы теплопередачи. К ним относятся:

- теплопроводность

- конвекция

- тепловое излучение

Теплопроводность - это процесс передачи теплоты внутри тела от одних частиц к другим, вследствие их движения и соударения. Передача теплоты только теплопроводностью может происходить лишь в твердых телах.

Пример: наружная поверхность стакана с горячим чаем становиться так же горячей за счет процесса – теплопроводности внутри стенок стакана.

Конвекция – это процесс распространения теплоты в результате движения объема и перемещения частиц жидкости или газов.

Пример: Обогрев комнаты батареей.

Различают: естественную конвекцию - движение частиц вызвано разностью плотности газа или жидкости в различных точках объёма, вследствие разности их температур в этих точках; принудительную конвекцию – перемещение газа или жидкости осуществляется специальными устройствам (вентиляторами).

Тепловое излучение – перенос энергии, обусловленный процессами испускания, распространения и поглощения электромагнитных волн.

Пример: тепло, получаемое от солнца.

Теплообменное оборудование.

Теплообменники – это аппараты, в которых осуществляется теплообмен между греющими, и нагреваемыми средами. Греющие и нагреваемые среды называются теплоносителями.

В теплообменных аппаратах происходят различные тепловые процессы: нагревание, охлаждение, испарение, конденсация, кипение и др.

Классификация по назначению:

Теплообменники - регенераторы – в них используется тепло уходящих горячих потоков.

Теплообменники – подогреватели (рибойлеры) – в них используются специальные теплоносители: горячая вода, пар, горячие масла.

Холодильники – это аппараты, в которых охлаждаются горячие потоки специальными хладагентами (сжиженные газы, аммиак, этилен, пропан).

Конденсаторы – это аппараты, в которых происходит конденсация паров.

По конструкции теплообменники бывают:

- кожухотрубчатые

- змеевиковые

- пластинчатые

Кожухотрубчатыетеплообменники по конструкции бывают:

- теплообменники с неподвижными трубными решетками ТН, применяются на давление до 40 АТ и температуру от -30° до 350° и бывают одно, двух, четырех и шести ходовыми по трубному пространству.

- теплообменники с линзовым компенсатором на корпусе ТЛ, они аналогичны с ТН. Это теплообменники жесткой конструкцией, у них трубные решетки приварены к корпусу и трубный пучок не вынимается.

- теплообменники с плавающей головкой ТП, применяются на давление до 90АТ и температуру от -30° до 450°, бывают двух и четырех ходовыми по трубному пространству, и одноходовыми - спец. конструкции.

- теплообменники с U – образным трубным пучком ТU, применяются на давление до 64 АТ и температуру от -30°до 450°, бывают только двуходовыми по трубному пространству. Ставятся только на чистые среды, т.к. из-за U-образного трубного пучка эти теплообменники сложно чистить.

А) по периметрам правильных шестиугольников

Б) по окружностям

В) коридорное расположение

Нагревание горячей водой.

Вода является наиболее доступным теплоносителем и позволяет нагреть рабочую смесь до t =100. Применяется в рибойлерах и водогрейных котлах.

Нагревание топочными газами

Топочные газы обеспечивают нагревание рабочих смесей до t= 1000-1100 гр. Этот процесс осуществляется в технологических печах.

Охлаждающие агенты и способы охлаждения. Конденсация.

Для охлаждения рабочей среды до 10-30 гр. широко применяют воду и воздух. Вода имеет более высокие значения теплоемкости и коэффициент теплоотдачи, чем воздух.

На предприятиях вводится система водооборота, которая позволяет сократить в целях экономии потребление воды из внешних источников и уменьшить сброс загрязненной воды в водоемы.

Оборотную воду из теплообменных устройств охлаждают в градирнях- башнях с размещенным слоем насадки, по которой стекает вода. За счет частичного испарения вода охлаждается в потоке движущегося противотоком воздуха и снова используется в качестве охлаждающего агента.

При использовании атмосферного воздуха в качестве охлаждающего агента в градирнях и теплообменных аппаратах осуществляют его принудительную циркуляцию с помощью вентиляторов. Преимущества воздуха обусловлены доступностью и практически не загрязняют окружающую среду, к его недостаткам следует отнести низкий коэффициент теплоотдачи и невысокую удельную теплоемкость, вследствие чего, требуется большой расход воздуха.

Лед применяют для охлаждения рабочей среды до 0 градусов. Если ко льду или снегу добавить поваренную соль, то t таяния этой смеси будет ниже 0. Для охлаждения до температуры ниже 0 градусов, применяется аммиак, имеющий низкую температуру кипения. Конденсация паров и газов в химической промышленности осуществляется путем их охлаждения. Данный процесс используется при выпаривании растворов, ректификации, сушке и др.

В зависимости от свойств и назначения конденсируемых продуктов процесс проводится в конденсаторе смешения или поверхностных конденсаторах.

В конденсаторах смешения отработанные пары смешиваются с водой, подаваемой для охлаждения пара, конденсируются, затем сбрасываются в канализацию.

Теплообменник типа “труба в трубе”

Технологическое оборудование. - student2.ru

Внутренняя труба

Наружная труба

Калач

Соединение

I II –потоки теплоносителей

Несколько отрезков труб 2,каждый из которых, заключен в трубу, 1 большего диаметра. Внутренние трубы соединены друг с другом последовательно калачами 3, наружные – патрубками с фланцами. Отдельные элементы теплообменника собирают в вертикальные секции. В такой конструкции, благодаря малой площади сечения внутренней трубы и узкому кольцевому зазору даже при небольшом расходе теплоносителей достигается высокая скорость их потоков, что обеспечивает эффективную теплоотдачу. К недостаткам относятся: громоздкость и металлоемкость.

Испаритель (рибойлер)

Испаритель состоит из корпуса 4, в котором находится трубный пучок 7 с «плавающей головкой» 6.В нутрии корпуса установлена сливная пластина 5. Трубный пучок одной стороной соединён с распределительной камерой 8, имеющей внутри сплошную горизонтальную перегородку. Камера имеет два штуцера для входа и выхода теплоносителя (пар или горячий нефтепродукт). Корпус имеет три штуцера: один – для входа нагреваемого углеводородного продукта, второй – для выхода отпаренного нефтепродукта после сливной перегородки и третий – для выхода паров и направления их в ректификационную колонну. Уровень продукта поддерживается за счёт сливной перегородки 5, так что при нормальной работе пучок 7 полностью покрыт отпариваемым нефтепродуктом. По трубному пучку направляют теплоноситель (насыщенный пар или горячий нефтепродукт). Отдав своё тепло нагреваемой среде, теплоноситель выходит из пучка через другой штуцер.
Эксплуатация и технологическая обвязка теплообменника

Технологическое оборудование. - student2.ru

Барометрический конденсатор

Технологическое оборудование. - student2.ru

а) с сегментными полками б) с кольцевыми полками

Схема аппарата воздушного охлаждения с горизонтальным расположением секции (АВГ)

Технологическое оборудование. - student2.ru

Технологические печи

Трубчатые печи – предназначены для высокотемпературного нагрева нефти и нефтепродуктов в процессе их переработки.

Печи работают следующим образом:

Топочный мазут или газ сжигается в форсунках – горелках, расположенных в камере радиации. Газы сгорания из камеры радиации поступают в камеру конвекции, затем направляются в дымоход (в нём установлен шибер – заслонка для регулирования тяги) и по дымовой трубе уходят в атмосферу.

Газ или нефтепродукт одним, или несколькими потоками поступает в верхние трубы конвекционного змеевика, проходит трубы на стенных экранах камеры радиации и, нагревшись до необходимой температуры, выходят из печи.

Таким образом, трубчатая печь состоит из камер: камеры сгорания или

Наши рекомендации