Двухосновные насыщенные кислоты
Двухосновные предельные (насыщенные) кислоты имеют общую формулу СnН2n(СООН)2- Из них важнейшими являются:
HOOC-COOH – щавелевая, этандикарбоновая кислота
HOOC-СН2-COOH – малоновая, пропандикарбоновая кислота
HOOC-СН2-СН2-COOH – янтарная, бутандикарбоновая кислота
HOOC-СН2-СН2-СН2-COOH – глутаровая, пентандикарбоновая кислота
HOOC-СН2-СН2-СН2-СН2-COOH – адипиновая, гександикарбоновая кислота
Способы получения
Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот (окисление гликолей, гидролиз динитрилов, синтез Кольбе - см. Лекцию№20). Существуют и специфические способы получения двухосновных карбоновых кислот
1. Окисление оксикислот:
2. Окисление циклоалканов. Это промышленный способ получения адипиновой кислоты
Побочно образуются также янтарная и щавелевая кислоты. Адипиновая кислота применяется для синтеза волокна найлон 6,6 и пластификаторов.
Физические свойства
Дикарбоновые кислоты – твердые вещества. Низшие кислоты хорошо растворимы в воде, но плохо в органических растворителях.
Химические свойства
Двухосновные кислоты более сильные, чем одноосновные, они характеризуются двумя константами диссоциации Ка1 и Ка2
Диссоциация первой карбоксильной группы протекает легче. Это особенно заметно для щавелевой и малоновой кислот и связано с тем, что неионизированная карбоксильная группа проявляет электроноакцепторный индуктивный эффект по отношению к ионизированной карбоксильной группе и стабилизирует тем самым образующийся карбоксилат-анион.
Дикарбоновые кислоты, в которых две карбоксильные группы разделены цепью из шести и более атомов проявляют свойства, аналогичные монокарбоновым кислотам. Механизм реакций образования диамидов, сложных диэфиров и др., для дикарбоновых кислот тот же, что и для монокарбоновых кислот.
1. Отношение к нагреванию. Примером необычного поведения дикарбоновых кислот, обусловленного наличием двух карбоксильных групп, могут служить реакции, протекающие при нагревании.
Так, щавелевая кислота при нагревании до 150°С отщепляет диоксид углерода с образованием муравьиной кислоты:
НООС–СООН ® НСООН + СО2
Малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления отщепляет СО2 с образованием уксусной кислоты или ее моно- и дизамещенных гомологов:
НООС–СН2–СООН ® СН3СООН + СО2
НООС-СН(СН3)-СООН ® СН3СН2СООН + СО2
НООС-С(СН3)2-СООН ® (СН3)2СНСООН + СО2
Дикарбоновые кислоты, содержащие четыре или пять атомов углерода между карбоксильными группами (янтарная и глутаровая кислоты) при нагревании отщепляют воду и образуют циклические ангидриды:
Подобные циклические соединения получают и из амидов:
2. Пиролиз кальциевых и бариевых солей. При пиролизе кальциевых или бариевых солей адипиновой, пимелиновой и пробковой кислот происходит отщепление СО2 и образуются циклические кетоны:
3. Синтезы на основе малонового эфира. Имеют большое значение в органической химии.
Атом водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир), обладает кислотными свойствами и дает натриевую соль с этилатом натрия. Эту соль - (натрий – малоновый эфир) алкилируют галогеналканами по механизму нуклеофильного замещения SN2. На основе натрий - малонового эфира получают одно- и двухосновные кислоты:
Синтез на основе малонового эфира является одним из лучших способов получения карбоновых кислот. Планирование синтеза карбоновых кислот с использованием малонового эфира сводится к выбору подходящего алкилгалогенида. Для этого получаемую кислоту рассматривают как моно- или диалкилуксусную кислоту. При действии галогенангидридов карбоновых кислот с последующим гидролизом и декарбоксилированием из натрий - малонового эфира получают кетоны: